用泰勒公式求極限應該怎麼做,利用泰勒公式求極限,怎麼做?

時間 2021-08-11 17:18:43

1樓:匿名使用者

就是記住那五六個基本函式的式,遇到類似的函式極限時,如果等價無窮小和羅比達法則什麼的不好用或者較複雜時,可以考慮泰勒級數求極限,至於到幾階,一般視分子或者分母而定,如果是兩個相加或者相減函式的,那麼就是,遇到係數不為零的那個無窮小出現為止。

lim(x–>0)/

首先分子中的(1+x^2)^(1/2)這一項需要進行,由於分子中還有1+1/2(x^2)這一項,所以你只需要把他到x的4次項就可以了。這也就是我前面所講的到係數不為零的那一項出現為止

然後,由於分子等價於x^4/8,所以分母也往這個方向靠就行了。由於分母中有一個sin(x*x)等價於x^2,所以前面的cosx-e^(x^2)當然也僅需要到x的2次方項就可以了。

因為cosx-------1-0.5x*xe^x---------x

把上述等價無窮小帶入分母即可,答案應該是 -1/12

2樓:匿名使用者

用泰勒公式把所有的表示式裡面的非多項式部分成多項式,再求多項式的極限。

舉例:lim (sinx)/x

=lim (x - x^3/3! + x^5/5! - ...)/x

=lim 1 - x^2/3! + x^4/5! - ...=1

利用泰勒公式求極限,怎麼做?

3樓:假面

就是記住那五六個基本函式的式,遇到類似的函式極限時,如果等價無內窮小和羅比容達法則什麼的不好用或者較複雜時,可以考慮泰勒級數求極限,至於到幾階,一般視分子或者分母而定,如果是兩個相加或者相減函式的,那麼就是,遇到係數不為零的那個無窮小出現為止。

lim(x–>0)/

首先分子中的(1+x^2)^(1/2)這一項需要進行,由於分子中還有1+1/2(x^2)這一項,所以你只需要把他到x的4次項就可以了。這也就是我前面所講的到係數不為零的那一項出現為止

然後,由於分子等價於x^4/8,所以分母也往這個方向靠就行了。由於分母中有一個sin(x*x)等價於x^2,所以前面的cosx-e^(x^2)當然也僅需要到x的2次方項就可以了。

因為cosx-------1-0.5x*xe^x---------x

把上述等價無窮小帶入分母即可,答案應該是   -1/12

4樓:匿名使用者

^運用等

zhi價無窮小和泰勒公式代dao換來版做

原式=lim(x->0) [1+x^權2/2-√(1+x^2)]/[(cosx-e^(x^2))*x^2]

=lim(x->0) [1+x^2/2-1-x^2/2+x^4/8+o(x^4)]/[(1-x^2/2+o(x^3)-1-x^2+o(x^2))*x^2]

=lim(x->0) [x^4/8+o(x^4)]/[-(3/2)*x^4+o(x^4)]

=-1/12

用泰勒公式求極限,我要怎樣知道我要幾次方

5樓:超級死神剋星

分子或分母是幾個單獨的函式的乘積時,各自只需替換到最低階的泰勒公式,如果分子是幾個單獨的函式相加減時,先確定分母的關於x(x→0時是x,x→a時是x-a)的無窮小的階數,而分子中的每個單獨的函式的泰勒公式的替代要使得x的最高次數與分母的關於x(x→0時是x,x→a時是x-a)的無窮小的階數相一致,才能使替代準確無誤。你可以給我一道具體的題目,我來跟你以這道題為例具體說明一下這種解法。

泰勒公式求極限有什麼前提條件

6樓:匿名使用者

如果你是用麥克勞林公式,就必須要在x->0的情況下可用

例如,你要用sin(1/x)的麥克勞林公式,則必須1/x->0

利用泰勒公式求極限

7樓:假面

就是記住那五六個基抄本函式襲的式,遇到類似的函式bai極限時,du如果等價無窮小和羅比達法則zhi什麼的不dao好用或者較複雜時,可以考慮泰勒級數求極限,至於到幾階,一般視分子或者分母而定,如果是兩個相加或者相減函式的,那麼就是,遇到係數不為零的那個無窮小出現為止。

lim(x–>0)/

首先分子中的(1+x^2)^(1/2)這一項需要進行,由於分子中還有1+1/2(x^2)這一項,所以你只需要把他到x的4次項就可以了。這也就是我前面所講的到係數不為零的那一項出現為止

然後,由於分子等價於x^4/8,所以分母也往這個方向靠就行了。由於分母中有一個sin(x*x)等價於x^2,所以前面的cosx-e^(x^2)當然也僅需要到x的2次方項就可以了。

因為cosx-------1-0.5x*xe^x---------x

把上述等價無窮小帶入分母即可,答案應該是   -1/12

8樓:匿名使用者

^運用等價無窮小zhi和泰勒公式代dao換內來做原式=lim(x->0) [1+x^容2/2-√(1+x^2)]/[(cosx-e^(x^2))*x^2]

=lim(x->0) [1+x^2/2-1-x^2/2+x^4/8+o(x^4)]/[(1-x^2/2+o(x^3)-1-x^2+o(x^2))*x^2]

=lim(x->0) [x^4/8+o(x^4)]/[-(3/2)*x^4+o(x^4)]

=-1/12

用泰勒公式計算極限,要過程,用泰勒公式求極限 要到多少項

2 y 0時,1 y 1 y 2 y 2 8 o y 2 因此x 0時 1 x 2 1 x 2 2 x 4 8 o x 4 即分子 1 x 2 1 x 2 2 x 4 8 o x 4 y 0時,e y 1 y o y 2 因此x 0時e x 2 1 x 2 o x 2 又cos x 1 x 2 2 ...

想問一下求極限用泰勒公式這麼化簡為什麼不對

x 0 分子 sinx 2 x 2 o x 2 e x 1 x 1 2 x 2 o x 2 sinx 2 e x 1 x 3 2 x 2 o x 2 ln sinx 2 e x ln 1 x 3 2 x 2 o x 2 x 3 2 x 2 1 2 x 3 2 x 2 2 o x 2 x 3 2 x ...

7 2 2 6 85 7用簡便方法應該怎麼做

暴走少女 7.2 2.6 85.7 2.77 85.7 88.47 解析 此題沒有簡便方法,因為7.2 2.6本身就除不盡,四捨五入保證末位數是7,與85.7直接相加即可,用的是先乘除後加減的演算法。注意 在進行簡便運算 四則運算 時,應注意運算子號 乘除和加減 和大 中 小括號之間的關聯。不要越級...