高數求極限,對於sinn求極限,為什麼可以求無極限,也可以求有極限

時間 2021-08-11 17:40:02

1樓:兔老大米奇

f(x)=sgn(x),g(x)=-sgn(x),在x→0時都沒有極限,但是f(x)+g(x)≡0,在x→0時的極限存在。

例:求一道極限題lim(sinn!×n^2/3)/(n+1)。

解法一:(定義法)

∵對任意的ε>0,存在n=[1/ε³]([1/ε³]表示不超過1/ε³的最大整數),當n>n時,

有|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)<n^(2/3)/n=n^(-1/3)<ε

∴根據極限定義,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0;

解法二:(兩邊夾法)

∵|n^(2/3)sinn!/(n+1)|≤n^(2/3)/(n+1)

∴-n^(2/3)/(n+1)≤n^(2/3)sinn!/(n+1)≤n^(2/3)/(n+1)

∵lim(n->∞)[n^(2/3)/(n+1)]=lim(n->∞)[(1/n^(1/3))/(1+1/n)]=0

同理lim(n->∞)[-n^(2/3)/(n+1)]=0

∴根據兩邊夾定理,知lim(n->∞)[n^(2/3)sinn!/(n+1)]=0。

擴充套件資料

證明以下數列極限不存在:

lim(sinn)/(n的平方+1)=0,n到正無窮:

lim(sinn)/(n^2+1)

因為,sinn有界

1/(n^2+1)趨於0,為無窮小量

故,直接有:

lim(sinn)/(n^2+1)=0。

2樓:遊馳皓

如果告訴的是遞推公式,一般的方法是,單調有界法,只要證明其單調增加有上界或單調減少有下界就說明該數列極限存在,是多少,就是在遞推公式兩邊取極限就行了。(還可以用定義,這是在不具有單調性的時候,就是你先在遞推公式兩邊求極限,可以得出該數列的極限值,這個過程是在草稿紙上的,然後用xn或xn+1來減去你求得的值取絕對值,利用遞推公式對這個式子不斷的放大,讓它小於。。。。。,到最後小於某個有關n的式子,並且當n趨向無窮時這個式子是等於0的那麼就說明該數列極限存在並等於你開始求的那個值,這個方法不理解就算了,一般不會考的) 如果給你的直接就是數列的通項,那麼直接求通項的極限就行了,看存在不。

高等數學都學什麼?

3樓:demon陌

高等數學主要內容包括:極限、微積分、空間解析幾何與向量代數、級數、常微分方程。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

4樓:愛要一心

這是目錄:

一、函式 極限 連續

二、一元函式微分學

三、一元函式積分學

四、微分方程初步

五、向量代數 空間解析幾何

六、多元函式微分學

七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數

我剛剛上完大一,高數主要就是學微積分,因為大學裡的其他學科很多都要用到微積分,所以要會算,那些微積分的公式都要很熟悉的。 先是學導數 ,微分就是在式子後面乘一個dx,而積分就是微分的逆運算。

5樓:匿名使用者

一、函式 極限 連續

二、一元函式微分學

三、一元函式積分學

四、微分方程初步

五、向量代數 空間解析幾何

六、多元函式微分學

七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數

它的資料和講義,網上有很多。

6樓:匿名使用者

主要就是定積分還有微積分方面的知識

7樓:天涯客

函式,極限,連續

一元函式微分

一元函式積分

多元函式微分

多元函式積分

常微分方程

怎樣很好的學習高等數學?

8樓:匿名使用者

大學的學習生活是我們每個人都向往的,可是殊不知大學的學習內容並不比我們高中所學知識簡單多少,就好比大學的高等數學,是一門讓很多同學都頭疼的學科,深奧的知識和複雜的公式讓很多同學在高等數學面前都繳械投降。其實我們大可不必擔心,我們要明白一些問題掌握一些技巧來讓高等數學變得不再是個難題。

首先就是我們要明白一點,到了大學以後,我們都到了一個統一的起點,所以我們要拋開以前的觀念,就算是以前我們對數學不感興趣,或者我們以前的數學成績很差,我們也不應該放棄自己,在新學期裡一定要下定決心攻克這個難題,每堂課都認真聽講,付出的努力肯定是有回報的。

其次就是我們一定要學會合作學習。大學裡有很多比我們優秀的人,我們一定要利用好這個資源,如果有什麼不懂的或者是以前有遺漏的知識,我們都可以麻煩同學來給我們進行補習,多用點時間和精力,總會看到成果的。

最重要的一點就是我們一定要有信心,不能因為以前知識的不紮實就放棄自己,克服自己的恐懼心理,只要是自己下了足夠的辛苦,就算是最後的結果不盡人意我們也能夠給自己一個合理的答卷,做到自己問心無愧。

9樓:帥帥的火龍果二

聽課之前一定要看書,要耐心仔細地把書上內容看兩遍。很多時候你看書的速度都趕上不老師的講課速度,而老師兩小時的講課,很可能講三十四十頁。所以要抓緊時間看書。

這樣才有利於上課的時候加深印象。老師講完之後,最好再結合筆記再看一遍書。

看完之後,要做書上的習題,大學學不學在你,所以得有自覺性,書上的習題一定要全做!有專門指導習題的老師,但能自己想的就自己想,反覆想。

找一本習題集,大體做一遍。如果你想將來考研的話。那麼你都做一遍。

找一本另外的教材,學完一章之後再跟你的教材對照讀一下。看有沒有收穫。只需要一本就夠了,目的是開闊眼界,多看無益,把自己的書弄的爛熟才是重點。看不懂書,不要硬做題,用處不大。

10樓:匿名使用者

這也是我比較苦惱的問題,當年上學的時候也被高等數學折磨瘋了。特別涉及到了微積分,確實是一臉懵啊。不過還是可以通過向同學請教,還有參考習題的答案來努力提升自己的水平。

課前預習也是非常重要的環節,如果少了這個環節,那高等數學就不可能學好。因為學時有限,老師有時候一節課能講課本幾十頁的內容,不預習根本就跟不上啊。

11樓:山水有喵嗚

假如要求是瞭解高等數學,科普目的,那麼看這本書就可以了。

《歐姆社學習漫畫:漫畫微積分》

假如要求再高一些,不僅希望瞭解大概內容,還希望會用一些東西。那麼可以找一些針對職高專科或者是文科的教材。那些教材知識點不多,但是都會講最重要,常見的知識點。

假如是應對考試,看自己的教材和老師上課的講義。

假如是考研,同濟的《高等數學》是必要的,還需要歷年的真題,以及一些你喜歡的輔導書。

假如是考數學系的研究生,推薦裴禮文的《數學分析中的典型問題和方法》和謝惠民 的《數學分析習題課講義》,謝的書難度極高,做題的話最好和同學一起討論,不然可能永遠做不出。

12樓:藍水燮

不要心懷牴觸,從頭開始補課,融會貫通就可以了

。我上大學的時候學的最好的就是高等數學,曾經考過滿分,高等數學其實並不難,而且學進去之後你會發現很有趣。因為現在很多人都把高等數學魔幻化了,所以造成很多人看到高等數學的書就頭疼,其實你就把他想的容易點,像小學最基礎的數學,一點一點的把基礎打好,再聽講就不會覺得像天書了。

13樓:一葉長青啦

要學好基礎,對三角函式,幾何,代數,概率等高中課程要精通,最起碼要熟練掌握基本的理論,而高等數學就是進一步深入學習這些東西

培養自己的邏輯思維,邏輯思維對學習高等數學非常重要,就是分析問題的能力,循序漸進,層層相扣的剖析問題的能力

要多記錄,對高等數學重要的公式,理論要準備一個小本子,包括課堂筆記等,記錄下來隨身帶著,熟練記憶,經常溫習,能記在腦海裡

要掌握學習技巧,任何學習都是有技巧的,如果找不到技巧,盲目學習之後事倍功半,起不到很好的效果

14樓:葉梓葉青

如果你高中數學就不及格,建議你去重新學學習一些高中比較重要的公式,因為大學學科一定會用到。到來了上課的時候 ,你需要全神貫注的聽老師的講解,可能你當時會了,但是之後依然會忘記,所以你要多做一些題目。最好與剛上的課息息相關的,基礎性比較強的,最後複習的時候再做一些加強的題目。

15樓:今天就中了是的

第一首先在上課之前自己要把這一張的內容先看一下,然後上課的時候早點去,佔一個前面的位置,上課的時候認真一點,在課下多看看上課沒聽懂的地方,記記那些公式和性質定理,然後把課後的題做一做,不懂得可以去問問同學,或者是在qq上問問老師,只要肯下功夫,一定能學好的。

16樓:配角解釋

首先,上課的時候就是你要讓自己在狀態哦。認真聽講,不會的問題還是要和同學討論和向老師請教。然後就是你要自己努力,然後在課下多多做題。

還有就是記憶一些必備的公式,如果你的興趣確實不高,你可以在考試前努努力,別掛就行了。

17樓:匿名使用者

學習數學是講究方法的,數學講究邏輯和一定的數學規律。數學從基礎知識上就一貫相承,每個定律和公式都是在原有基礎上才能更好地理解。如果學習起來很吃力,那麼基礎知識肯定是不紮實,要想學習好數學,那麼就得把缺失的基礎補上。

18樓:飄零久生師友

我覺得像學習高數這種比較難得科目就要認真一點了,因為你不學你是真的不會,你學了還有可能不會,更何況不認真呢。所以還是建議,上課之前好好的預習一下今天要學的知識,然後今天的課結束了之後,也要好好的再複習一下今天學過的知識,這個真的很重要的。所以高數這個事情不能偷懶還是按部就班的學習吧。

19樓:咪啊咪

數學上課的時候一定要認真的聽老師講思路,不要只顧著抄筆記或者是跟別人聊天,數學難在思維的解題方式。你道題沒有思路就無法走下去。你日常可以多練一些題來鍛鍊你的解題思維,不要循規蹈矩,固守一個解題思路。

還可以向老師諮詢,沒事可以跟同學一起**一下。

20樓:深海不吱

高等數學不好的情況下,要麼抽時間自學,要麼找人教你。自學挺考驗一個人的自制力的,只有自制力好的人,才可能在自學中學到東西。此外,如果找同學教你,一定要找個有耐心的,畢竟你的基礎不好,中間可能要費很多口舌,一般人都不太願意做這種事情。

高等數學怎樣才能學好?

21樓:米米愛凌羽

認真聽、課後複習和預習、多跟學習好的人請教

高等數學,在大學裡面是很多學渣眼中畢業的攔路虎,所以學好高等數學非常的重要,但是如何學好就是其中的關鍵了,所以建議分成三步走;

第一上課認真聽,如何什麼東西要是上課不認真聽,除非是天生有非凡天賦,可以課後自己一看就懂,不然就老老實實上課做好筆記工作,並且認真聽,聽不懂也要聽,畢竟這個也會讓你的腦子留下印象。

第二要課後複習和預習,高等數學其實和以前的數學的學習方法都是類似,需要不停的鞏固運算,不然會非常容易忘記裡面的知識,所以課後的複習和預習工作真的必不可少,不然每次講完就講完,知識都會還給老師,那怎麼能將高等數學學會呢?

第三,要跟學習好的人請教,因為大學已經不想高中一樣了,不懂的可以隨時問老師,上了大學很多同學可能連老師的名字都不認得,並且不是每個老師都有固定的辦公位置,很多老師上完課之後,你就找不到他在**了,所以有一個成績好的人幫忙,就像有個小老師在教你一樣。

高等數學說難也不難,其實什麼東西只要認真學都是學得會的,說學不會的都是害怕辛苦,腦子裡自動下指令說不而已,只要克服困難,一切都是非常的簡單。

高數,求極限問題,大學高數求極限問題?

數神 解答 這種題目以後再次碰到不要去計算,用眼睛觀察一眼得出極限為 我試了你的方法,約掉根號2x 1最後結果也得不到1啊,這裡的x是趨近於 不是趨近於0 我告訴你以後這種題目如何用肉眼觀察,這也是教材上的方法!形如 lim x a0x m a1x m 1 a2x m 2 amx 1 b0x n b...

高數求極限

x趨向於1時,分母趨向於0,即x 1趨向於0x趨向於 時,分母趨向於 即x 1趨向於 圖中解題思路是,分母趨向於0時,該式倒數極限為0,所以分母趨向於無窮時,該式極限為 我個人認為,上 答方法有誤。原式 lim 2x 2 2x x 1 2 x lim 2x x 1 lim 2x 2 2 x 1 li...

高數求極限,怎麼求這題,高數極限這題怎麼求?

我來寫一寫,對原式取對數 lim n 1 n ln a n n b n n lim n 1 n ln na n b n lim n 2 n lnn 令n x 1 x ln xa x b x lim x 2 x lnx 對減號後面部分的式子使用洛必達,結果極限為零 lim x ln xa x b x ...