特殊一元四次方程有幾個解,特殊一元四次方程有幾個解?

時間 2021-09-03 05:42:41

1樓:常姣貊敏學

一元n次方程,必然有n個根

這裡包括相同的根

樓主說的方程是一元四次方程,有四個根,沒錯;其中有相等的根。

1樓說的不對,一個方程只要是一元的,根和解沒有區別;多元方程,只能叫“解”,不能叫“根”。

2樓:翠豐巴安和

sinx=1

非齊次設sinx=0

齊次解得x=2kπ

2kπ就是齊次解

sinx=1

我們不能確定x等於多少

因為有無數多個解

但是我們隨便找出一個

就可以比如x=π/2

或者x=5π/2

任意找一個

這個x=π/2

就是特解

然後我們說2kπ+π/2

就是sinx=1

的通解你要說

2kπ+5π/2是通解

也一樣不知道這樣比劃

你明白沒有

一個一般非齊次的微分方程

我們是解不出來全體解得

所以我們只有按方法找一個特解

這個特解差不多是屬於試出來的

但是我們可以求出齊次微分方程的全體解

也就是通解

通解+特解

就可以包含非齊次的所有解了

至於為什麼通解+特解

就是方程的全體解

書上有詳細的證明過程的

看得懂就看

不能理解

就強制把它當做公理

特殊一元四次方程有幾個解? 5

3樓:寒風冷秋

首先多次方程叫做根,不叫解

如題中的方程有四個根,其中有兩對等根

4樓:匿名使用者

方程有四個根,其中有兩對等根

5樓:匿名使用者

一元n次方程,必然有n個根

這裡包括相同的根

樓主說的方程是一元四次方程,有四個根,沒錯;其中有相等的根。

1樓說的不對,一個方程只要是一元的,根和解沒有區別;多元方程,只能叫“解”,不能叫“根”。

一元四次方程咋麼解呀???最好加例題!!謝謝

6樓:匿名使用者

對於一些特殊的一元四次方程可用因式分解法求解:

如解方程x^4-3x^2+2=0

方程左邊可因式分解為(x^2-1)(x^2-2)=0解得x=-1,1,√2,-√2

高中階段一般不會遇到很一般的一元四次方程的求解,另外,一元四次方程ax^4+bx^3+cx^2+dx+e=0(a≠0)有求根公式,但相當複雜,有興趣可查閱相關資料。

還有一點對於一元五次以上的方程就再沒有求根公式了。

7樓:匿名使用者

分解因式法.

比如 x^4-2x^2+1=0

求解則分解為

(x^2-1)^2=0

所以x^2-1=0

所以x=正負1

一元四次方程僅有一個實根 如何判別,或者說係數有什麼特殊性? 140

8樓:

一元四次方程僅有一個實根

是不可能的事情

實根是成雙成對出現的

9樓:匿名使用者

一元四次方程僅有一個實根,則方程必然能變形為:

(x-n)^2*(ax^2+bx+c)=0其中:b^2<4ac

即ax^2+bx+c=0無解

這個不需要四次方程啊

橢圓:x^2/a^2+y^2/b^2=1

設橢圓上一點p(acosx,bsinx)到圓心(m,n)的距離可以表示成三角函式。

最小值就是圓的半徑。

這個圓心是指定點,不是橢圓的中心。

10樓:宮崎小芒果

說實話這道題還真的有解答的方法,不過計算量太大,有點得不償失

該點必然是以橢圓外一點o(m,n)為圓心的圓並且與橢圓相切的切點(或者說有公切線)

設切點為p(asint,bcost),那麼切線的斜率為k1 = -a/b tant (這裡用求導數得斜率)

該點與o(m,n)的直線的斜率為 k2 = (n-bcost) / (m-sint)

由於op與切線垂直,那麼k1*k2 = -1

所以a/b * tant *(n-bcost) / (m-sint) = 1

後得到的是一個一元四次方程

然後方法是用盛金公式來求一元四次方程

一元四次方程一般式:ax^4+bx^3+cx^2+dx+e=0(a≠0,a,b,c,d,e∈r)

p=-(3b^2-8ac) q=3b^4+16a^2c^2-16ab^2c+16a^2bd-64a^3e

r=-(b^3-4abc+a^2d) ^2

a=p^2-3q b=pq-9r c=q^2-3pr

若a=b=0

y1=y2=y3=-p/3=-q/p=-3r/q

x1=1/4a(-b+√y1+√y2+√y3) x3=1/4a(-b+√y1-√y2-√y3)

x2=1/4a(-b-√y1+√y2-√y3) x4=1/4a(-b-√y1-√y2+√y3)

當x1=x2=x3=x4時,只有p,q,r全部為零時才能有唯一的根

若b^2-4ac=0

y1=-p+k y2=y3=-k/2

x1=1/4a(-b+√y1+√y2+√y3) x3=1/4a(-b+√y1-√y2-√y3)

x2=1/4a(-b-√y1+√y2-√y3) x4=1/4a(-b-√y1-√y2+√y3)

當x1=x2=x3=x4時,只有p,k全部為零時才能有唯一的根,因為a不能為零,所以b,c必須為零

還有其他兩種情況b^2-4ac>0和b^2-4ac<0就更為複雜,你可以去找一下盛金公式

一元三次方程和一元四次方程如何解答,及其產生歷史過程

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演繹思維是作不出來的,用類似解一元二次方程的求根公式的配方法只能將型如ax 3 bx 2 cx d 0的標準型一元三次方程形式化為x 3 px q 0的特殊型。一元三次方程的求解公式的解法只能用歸納思維得到,即根據一元一次方程 一元二次方程及...

一元三次方程和一元四次方程的求根公式是什麼

一元三次方程是型如ax 3 bx 2 cx d 0的標準型 其解法如下 將上面的方程化為x 3 bx 2 cx d 0,設x y b 3,則方程又變為y 3 c b 2 3 y 2b 3 27 bc 3 d 0 設p c b 2 3,q 2b 3 27 bc 3 d,方程為y 3 py q 0 再設...

解一元一次次方程式,解一元一次方程

解一元一次方程式的步驟 移項。合併同類項化為 a b的形式。兩邊除以未知數的係數,得出未知數的值。設一元一次方程為ax b 0 則其根為x b a。求解形如關於x的方程 ax b解 當a 0時,若b 0,則 0x 0,從而x可以取任何數。若b不等於零,則 0 x b 無解。當a 0時,方程的解為 x...