為什麼題目會問矩陣的行向量相關還是列向量相關

時間 2021-08-11 17:41:16

1樓:爵爺

問題好多啊,看的出是個好學的孩子

線性代數當時學得還不錯,好長時間不看了,說的不一定正確,選擇性接受

1.矩陣的秩,我們定義為:對於一個mxn的矩陣,如果可以找到一個r(r<=m,r<=n)階矩陣,其行列式不為零,任一個r+1階矩陣(如果存在的話)的行列式都為零,那麼這個r就成為這個矩陣的秩。

習慣上我們用行變換來求矩陣的秩,你用列變換其實也是等同的;

2.至於行、列向量組必須用哪種變換記不太清了,但是不管你是行變換還是列變換,非零行或列的個數就是矩陣的秩。還有一點就是,秩是一個數,我們一般說某某矩陣的秩是多少多少,而不會去說秩的個數是多少,也不會說非零行或列的個數是秩的個數;

3.按照你的表述,極大線性無關組是方陣它有兩個前提,即:以列向量組形式進行計算行滿秩,以行向量組形式進行計算列滿秩,這是一個特殊情況,你把它擴大為一般情況自然是錯的了;

4.極大無關組是基礎解系的一部分,假設列向量組m1, m2, m3構成了矩陣的極大線性無關組,那麼基礎解系就是k1m1+k2m2+k3m3 (k1,k2,k3為任意實數)---基礎解系應該是這樣子表示的吧,記不太清楚了,你再看看書吧

5.x明明是一個行向量,為啥你ax之後就成為列向量了?

希望能解決您的問題。

2樓:匿名使用者

注意: 矩陣的行數和列數並不一定相同

你是按a是n階方陣考慮的

無論是行向量組還是列向量組都是以列的形式構成矩陣嗎

3樓:小樂笑了

行向量組,排成n行,構成矩陣

列向量組,排成n列,構成矩陣

行向量組,如果排成1行,那就是一個更高維的行向量了,也可以認為是隻有1行的矩陣,但就無法判定向量組的線性相關情況了

4樓:暴孝不詞

是的。不特別說明時,

向量都是指列向量。

嚴格來講,a1=(2,-1,0,5)應表示為a1=(2,-1,0,5)^t,

......

5樓:定懷雨李乙

秩為3的話,4個列向量卻線性相關嘛,那就說明該矩陣行滿秩,而列向量是線性相關的。

樓主概念有點不混淆。相反,如果是4*3矩陣。舉個例子2*4的矩陣第一行100

0,第二行010

0很好理解兩個行向量線性無關,那就是列向量線性無關(列滿秩),行向量線性相關樓主這個提問有問題。只能說一個矩陣的列向量線性相關,或者行向量線性相關,而不能說一個矩陣相關或無關!很多係數矩陣都不是方陣,比如一個3*4的矩陣,如果秩為3的話

mxn矩陣行向量組和列向量組一個線性相關一個線性無關 舉例

6樓:aya嚴格

簡要概括來看,

rank(a)=行數,則行向量線性無關;

rank(a)=列數,則列向量線性無關;

rank(a)=行數=列數,則行、列向量線性無關。

7樓:匿名使用者

這道題太深奧了,請求老師給解答一下吧。我接她不出來了,謝謝老師啦,辛苦啦!

正交矩陣中列向量正交,為什麼行向量一定正交

這個你們沒證明過?若一個方陣的行向量是正交的則列向量都是正交的。因為陣是滿秩的。 證明 設a a1.an a1.an是一組線性無關的列向量 經過施密特標準正交化後 b b1.bn b1.bn是標準正交的列向量組所以 btb b1t b1.bn e.1 e是單位陣 t表示轉置 bnt b c1 b1....

實對稱矩陣的特徵向量相互正交?為什麼

應該說是 實對稱陣屬於不同特徵值的的特徵向量是正交的。設ap mp,aq nq,其中a是實對稱矩陣,m,n為其不同的特徵值,p,q分別為其對應得特徵向量.則p1 aq p1 nq np1q p1a q p1a1 q ap 1q mp 1q mp1q 因為p1 aq p1a q 上兩式作差得 m n ...

為什麼初等行變換不改變矩陣的列秩

小雨手機使用者 任意初等變換,都不改變矩陣的秩,矩陣行向量組的秩 矩陣列向量組的秩 矩陣的秩。引理 設矩陣a aij sxn的列秩等於a的列數n,則a的列秩,秩都等於n。當r a n 2時,最高階非零子式的階數 n 2,任何n 1階子式均為零,而伴隨陣中的各元素就是n 1階子式再加上個正負號,所以伴...