求高中立體幾何所有必背性質

時間 2022-06-27 04:30:03

1樓:匿名使用者

別人歸納給你的沒多大效果,還是自己找本筆記本翻開書認真地摘抄課本的定理,性質。自己總結一遍之後既有樂趣有可以把定理記牢...還不趕快試試!

祝你高考取得好成績!

from:廈門大學

2樓:匿名使用者

公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上的所有點都在這個平面內。 (1)判定直線在平面內的依據

(2)判定點在平面內的方法

公理2:如果兩個平面有一個公共點,那它還有其它公共點,這些公共點的集合是一條直線 。 (1)判定兩個平面相交的依據

(2)判定若干個點在兩個相交平面的交線上

公理3:經過不在一條直線上的三點,有且只有一個平面。 (1)確定一個平面的依據

(2)判定若干個點共面的依據

推論1:經過一條直線和這條直線外一點,有且僅有一個平面。 (1)判定若干條直線共面的依據

(2)判斷若干個平面重合的依據

(3)判斷幾何圖形是平面圖形的依據

推論2:經過兩條相交直線,有且僅有一個平面。

推論3:經過兩條平行線,有且僅有一個平面。

立體幾何 直線與平面

空 間 二 直 線 平行直線 公理4:平行於同一直線的兩條直線互相平

等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,並且方向相同,那麼這兩個角相等。

異面直線

空 間 直 線 和 平 面 位

置 關係 (1)直線在平面內——有無數個公共點

(2)直線和平面相交——有且只有一個公共點

(3)直線和平面平行——沒有公共點

直 線和 平面 平行 判定定理

性質定理

直 線與 平面 垂直 判 定 定 理

性 質 定 理

立體幾何 直線與平面

直線與平面所成的角 (1)平面的斜線和它在平面上的射影所成的銳角,叫做這條斜線與平面所成的角

(2)一條直線垂直於平面,定義這直線與平面所成的角是直角

(3)一條直線和平面平行,或在平面內,定義它和平面所成的角是00的角

三垂線定理 在平面內的一條直線,如果和這個平面的一條斜線的射影垂直,那麼它和這條斜線垂直

三垂線逆定理 在平面內的一條直線,如果和這個平面的一條斜線垂直,那麼它和這條斜線的射影垂直

空間兩個平面 兩個平面平行 判定

性質 (1)如果一個平面內有兩條相交直線平行於另一個平面,那麼這兩個平面平行

(2)垂直於同一直線的兩個平面平行

(1)兩個平面平行,其中一個平面內的直線必平行於另一個平面

(2)如果兩個平行平面同時和第三個平面相交,那麼它們的交線平行

(3)一條直線垂直於兩個平行平面中的一個平面,它也垂直於另一個平面

相交的兩平面 二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫二面角的線,這兩個半平面叫二面角的面

二面角的平面角:以二面角的稜上任一點為端點,在兩個面內分另作垂直稜的兩條射線,這兩條射線所成的角叫二面角的平面角

平面角是直角的二面角叫做直二面角

兩平面垂直 判定

性質 如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直 (1)若二平面垂直,那麼在一個平面內垂直於它們的交線的直線垂直於另一個平面

(2)如果兩個平面垂直,那麼經過第一個平面內一點垂直於第二個平面的直線,在第一個平面內

立體幾何 多面體、稜柱、稜錐

多面體定義 由若干個多邊形所圍成的幾何體叫做多面體。

稜柱 斜稜柱:側稜不垂直於底面的稜柱。

直稜柱:側稜與底面垂直的稜柱。

正稜柱:底面是正多邊形的直稜柱。

稜錐 正稜錐:如果稜錐的底面是正多邊形,並且頂點在底面的射影是底面的中心,這樣的稜錐叫正稜錐。

球 到一定點距離等於定長或小於定長的點的集合。

尤拉定理

簡單多面體的頂點數v,稜數e及面數f間有關係:v+f-e=2

多面 體

側面積公式

體積公式球

如何預習高中立體幾何,如何預習高中立體幾何

編者按 立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學好立體幾何談幾點建議。一 培養空間想象力 為了培養空間想象力,可以在剛開始學習時,動手製作一些簡單的模型用以幫助想象。例如 正方體或長方體。在正方體中尋找線與線 線與面 面與面之間...

高中立體幾何證明定理有哪些

雲陳 一.直線與平面平行的 判定 1.判定定理.平面外一條直線如果平行於平面內的一條直線,那麼這條直線與這個平面平行.2.應用 反證法 證明直線不平行於平面 二.平面與平面平行的 判定 1.判定定理 一個平面上兩條相交直線都平行於另一個平面,那麼這兩個平面平行 2.關鍵 判定兩個平面是否有公共點 三...

高中立體幾何,求學霸解答 3 ,謝謝啦

3 解析 在四稜錐p abcd中,ad bc,ad cd,pa pd ad 2bc 2cd,e,f分別為為ad,pc中點,pb ad 連線pe,be,pe ad,be ad 易知 pea ped peb pe eb 建立以e為原點,以eb方向為x軸,以ea方向為y軸,以ep方向為z軸正方向的空間直角...