1樓:匿名使用者
ogive函式是頭肩形。
頭肩形的反轉型態,包括以下兩種:股價呈強烈的上升型態,成交量隨漲勢大增。接著發生初級**,成交量減少,是為左肩。
以後,又有一個成交量極大的上升,在超過左肩頂部後發生另一成交量較小的**,**接近左肩底部的水準,是為頭部。
第三次上升的頂點也無法超過頭頂,成交量也較左肩與頭頂時減少,然後開始**,是為右肩。等到從右肩頂**,突破由左肩底與頭部底所連線的底部頸線後,股價隨成交量大增而**的幅度至少為頭頂至頸線的距離。
2樓:
ogive圖就是累計頻數多邊形圖。《愛上統計學》p40有介紹
3樓:知識不夠想問問
在y-axis用cumulative frequency(通常是數量)
在x-aixs用upper boundary它的圖表列子:
畫出來是這樣的,列子:
4樓:eva初號機
ogive 又稱累積次數多邊圖
[定義] 將一組連續型資料的資料分成陣列後,再繪製成累積次數分佈圖[特性]
分組的次序不能變動
專用於表示連續型資料之累積次數分佈圖
圖形為遞增形式
[步驟]
決定適當組數、組距 與組限
計算各組累積次數
以各組上限為水平距離,再以各組累積次數為參考資料: 高度,標以各組圓點
將每一圓點以線相連結
[慣例]
統計圖本身之線條,必須比座標線或尺度線粗與清楚兩端線段應延伸至橫軸上
橫軸與縱軸儘量由 0 開始
圖之高與長之比例大約為三:五,此即為**比例線段應以單一色為原則
組距以 5 10 15 …較為常用
5樓:匿名使用者
肩形圖 ogive 又稱累積次數多邊圖
[定義] 將一組連續型資料的資料分成陣列後,再繪製成累積次數分佈圖[特性]
分組的次序不能變動
專用於表示連續型資料之累積次數分佈圖
圖形為遞增形式
[步驟]
決定適當組數、組距 與組限
計算各組累積次數
以各組上限為水平距離,再以各組累積次數為高度,標以各組圓點將每一圓點以線相連結
[慣例]
統計圖本身之線條,必須比座標線或尺度線粗與清楚兩端線段應延伸至橫軸上
橫軸與縱軸儘量由 0 開始
圖之高與長之比例大約為三:五,此即為**比例線段應以單一色為原則
組距以 5 10 15 …較為常用
考研,高等數學,理工學科 如圖二元函式求極限這樣**錯了,注這個極限不存在
6樓:匿名使用者
分母中x²+y²=ρ²,所以ρ²的3/2次方等於ρ的6/2次方=ρ³
你似乎把x²+y²=ρ啦?
我挺喜歡數學函式的,麻煩問下大學裡應該學什麼專業
7樓:紫月開花
高等數學--大一一學年學完,
線性代數--大一一學期學完,概率論與數理專統計、複變函式與積分屬變換--大二 非數學系的如果是理工科在大一一般要學習基礎課程,如大學語文(就一學
期),大學英語(大一大二都要學,英語在大學很重要,考研出國都要考的),電子系的肯定要學c語言(大一學的,這個是很基礎也很重要同時也是很有用的,是程式設計基礎) 關於高中競賽,我的經驗是:小學的競賽題是初中的基礎題,初中的競賽題是高中的基礎題,高中的競賽題也就是大學的基礎題,所以看看大學的基礎教材應該對高中競賽有用,我的一些專門在高中搞競賽的同學就是和你一樣,早早把高中知識學完,然後學習大學教材,你很有前途啊!我今年該上大二了,我學的通訊工程,和電子資訊工程差不多,大一到大三學的差不多教程,希望能幫到你,祝學習進步,早日金榜題名!
8樓:大學考場規則的
高等數學屬於大學的學科基礎課,
9樓:
高等數學--大一bai一學年du學完,線性代數--大一一
zhi學期學完,dao概率論與數理統計、復變函專數與積屬分變換--大二 非數學系的如果是理工科在大一一般要學習基礎課程,如大學語文(就一學期),大學英語(大一大二都要學,英語在大學很重要,考研出國都要考的),電子系的肯定要學c語言(大一學的,這個是很基礎也很重要同時也是很有用的,是程式設計基礎) 關於高中競賽,我的經驗是:小學的競賽題是初中的基礎題,初中的競賽題是高中的基礎題,高中的競賽題也就是大學的基礎題,所以看看大學的基礎教材應該對高中競賽有用,我的一些專門在高中搞競賽的同學就是和你一樣,早早把高中知識學完,然後學習大學教材,你很有前途啊!我今年該上大二了,我學的通訊工程,和電子資訊工程差不多,大一到大三學的差不多教程,希望能幫到你,祝學習進步,早日金榜題名!
10樓:大變化
推薦麻省理工,上不上的了你自己的事了
數學與應用數學專業日常開設哪些課程?
11樓:稻殼張
我本人雖然不是數學專業的,但我有一個好哥們是數學專業的
,平時常在一起玩。所以對他們專業學的內容還算比較瞭解。
一般剛入學時,大一主要學習公共必修課,這個時候全部理工類學生學習的內容都是差不多的。像數學類基礎課《高等數學》、《高等代數》、《微分方程》、《概論統計》、《複變函式》等,數學專業和非數學理工類專業都要學。當然,數學專業的學生可能會學得更深一些,比如他們不學《高等數學》而學《數學分析》,後者在前者基礎上更強調邏輯推理和證明。
但這一現象並不一定只存在於數學專業上,我自己所在的學校(某985)全部工科專業都是學《數學分析》,跟數學專業學的一樣。
當然除了這些數學類的公共必修課,還會學習《大學英語》、《計算機基礎》、《毛概》等必修課。幾乎所有理工類的專業,都離不開程式語言,所以大一還會學習程式語言,一般高校都開設《c語言程式設計》,最近幾年,聽說有些學校不學c語言了,改學python,畢竟pthon 現在很火。以上這幾門課所有的高校都會開設的。
另外,有些學校還會有自己的特色,我所在的學校還把《大學語文》這種課作為大一學生的必修課,問過其他學校的同學,人家都不學的。
到了大二,就要學一些專業基礎課了,為學專業課打基礎。這個時候,不同專業之間所學習課程的差異就體現出來了。像我哥們,他們是數學專業,就要學一些《微分幾何》、《實變函式》等課程。
而我自己因為是電學類專業,就不會學這些,而是學一些電相關的《電路》等課程。
大
三、大四就進入到專業課的學習了。數學專業會有《偏微分方程》、《泛函分析》、《拓撲學》、《小波分析》、《模糊數學》等課程。我自己作為非數學類專業,到了研究生時才會學習《泛函分析》和《小波分析》,當然,是選修課。
12樓:jx的號
數學學哪些學科?其實在上大學之前,我一直以為大學數學和高中數學差不多,只是比高中數學難一點,但是萬萬沒想到,當我真的進入數學與應用數學領域,我才知道,原來還有數學分析、高等代數這些東西。
在數學與應用數學領域,必修的科目主要有數學分析、高等代數、解析幾何、概率論、實變函式、複變函式、常微分方程、近世代數,點集拓撲等,以及大學公開課,甚至包括一些與計算機相關的課程,你還可以根據自己的興趣選擇數論等選修課。
下面我先來說數學分析和高等代數,這是數學與應用數學的基礎科目,也是考研筆試必考科,大學一般會選擇大一兩到三個學期學習這兩門科目,可見其重要性,學數學一定要把這兩門課學透徹,因為後期科目都是在此基礎上進行的。
數學分支非常廣泛,希望大家能紮實學習,並且逐漸確認喜歡的方向,為後續學習做好準備
13樓:湖大數學學渣
一提到數學系,大家都會露出敬佩而又畏懼的表情,畢竟數學曾是大家的噩夢。我向大家介紹一下數學專業的基礎課,有:數學分析、高等代數、解析幾何,還要上:
等等。當然了數學系的學生也是要上公共大課的,比如大一的時候有的學校會安排思修課,軍事理論課,心理健康課。大二就會安排大學物理、c語言等等,c語言真的是和核心課程一樣燒腦。
就說數學分析吧,經常聽老師說大一的時候數學分析是最難的,也是最需要花時間的課程,每天至少要拿出三四個小時來學數學分析,當然這是除了正常的上課時間。數學分析會鍛鍊人的一種理性思維,其實數學專業的哪個課程不鍛鍊思維呢!(此處一隻數院渣渣留下了眼淚)學好數學而分析真的很重要,聽學姐說大二的核心課程還是跟數學分析有點關係的。
接下來說說高等代數吧,我們學院高等代數的課本用的是北大出版的課本,因為他的封面是黃色的,所以我們都稱他為“小黃書”。老師說當初決定用這本書的原因就是這本書裡有很多的習題,而且基礎知識也講的很不錯。但是!
這個書裡的習題真的好難!每次寫作業的時候都要花好幾個小時,但是當你做出來一道題的時候又會特別有成就感。一般高等代數都會在大一的時候結課,所以還是好好珍惜學高等代數的時間吧,畢竟以後的課程可能都會比這個難了。
大二開設的實變函式據說特別難,我已經預料到我的頭髮的下場了。(哭泣)
14樓:匿名使用者
我是吉大數學專業的一名同學,學數學學到頭禿的那種,接下來給大家介紹一下數學與應用數學的課程。
主幹課程有數學分析、高等代數、空間解析幾何、實變函式、複變函式、常微分方程、數學物理方程、泛函分析、微分幾何、拓撲學、抽象代數。
數學分析、高等代數、空間解析幾何這三門課程是在大一上的,是最基礎的三門課程,是其他課程的根基,直接點說,就是這三門學不明白,接下來的其他課程將更加學不懂。其中數學分析內容較多,也較為重要,初學可能較為困難,多用些功夫,就會漸入佳境了。下圖即為我們院所用的數學分析的教材,也是我們學院老師編著的。
大二會學複變函式、常微分方程和抽象代數,複變函式和數學分析的好多知識都是相關聯的,如果大一基礎打的好,這個時候學複變函式就會事半功倍。常微分方程是一門很重要的課,應用十分廣泛,同時,也需要數學分析中會學到的微積分的知識和高等代數中矩陣的相關知識。由此可見,學好數學分析和高等代數多麼重要。
同時,大
一、大二還有c語言和物理這兩門課,它們對今後數學的學習影響不大,但是c語言也很重要,它差不多是多數大學生都要學的一個基礎課程。
因為我現在是大二下學期,所以對後面的課程還不是特別瞭解,就不一一為大家介紹了。
最後,我想說,數學各個課程之間關聯非常強,大家想學好數學,基礎一定要打牢。
15樓:定理
作為一個活在林大努力學數學的我,那數學的科目可是廣泛,而且難...
首先是必須學的基礎科目:
1. 《數學分析》、《高等代數》
數分相比高代好學的多,內容多,但是具體,比較依靠算數能力,是高等數學的爸爸級別的科目。
而高代就比較抽象了,後期學到向量空間的時候,壓根上課就是一頭霧水。我數學分析90+高代就只有70分,我不太擅長抽象思維。
基礎學完之後就是向上的拓寬:
常微分方程、拓撲學、實變函式與泛函分析、復變、數值分析、統計原理、概率論、偏微分方
程等等
然後是第二大方面:
2.《c語言》、《資料結構》
應用數學會向計算機方面有所涉獵
我個人在程式設計方面有天賦,也比較愛好這類東西。對於c語言數學專業也是要學的,只是相比計算機專業我們學的比較少,也很容易。
先學習c語言程式設計,學的不是很多,大概到指標就結束了。
然後是資料結構:
儲存的資料結構的理解。
綜上:數學專業分為很多種,大多數都是從數學與應用數學以及計算機方面兩方面教學,計算機方面很少,只是初步涉獵,若有人跨專業考研也能打下基礎。
最後再給大家找一下我們學校的數學專業課程:
數學分析、高等代數、解析幾何、常微分方程、程式設計與數學軟體使用、概率論與數理統計、計算方法、離散數學、生物數學、實變函式、演算法分析與設計、點集拓撲、多元統計分析、泛函分析、數學建模、最優化方法、複變函式等等。
尋數學高手,求救啊
a 2 b 2 3,x 2 y 2 6,求ax by的最大值 ax by ax by a 2 x 2 2 b 2 y 2 2 9 2 我眼中只有最好!1 柯西不等式,a 2 b 2 x 2 y 2 ax by 2,所以ax by的最大值 為3 根號2不用那麼多爛方法,只用最基礎的和最經典的!這是我的...
求救!幾道概率數學題望高手予以解答
1.這些題很簡單,都是最簡單的古典概率題。你應該會的。肯能是你想太複雜了,做題的時候自信一點!1 取到字母m m的卡片有2張,總共11張,所以是 2 11 2 取到字母p p的卡片有0張,總共11張,所以是 3 取到母音 半母音字母 a e i o u y 母音 半母音字母 a e i o u y ...
銀行保函是什麼,什麼是銀行保函 銀行保函有哪些
銀行保函又稱 銀行保證書 銀行信用保證書 簡稱 保證書 銀行作為保證人向受益人開立的保證檔案。銀行保證被保證人未向受益人盡到某項義務時,則由銀行承擔保函中所規定的付款責任。保函內容根據具體交易的不同而多種多樣,在形式上無一定的格式,對有關方面的權利和義務的規定 處理手續等未形成一定的慣例。遇有不同的...