1樓:匿名使用者
方法1.格林公式簡單運用
1/2∮(l)xdy-ydx=∫∫(d)(∂q/∂x-∂p/∂y)dxdy
=1/2*2∫∫(d)dxdy=s(d)=πab其中d為l所圍成的閉區域
方法2.x=acosθ,dx=-asinθdθ,y=bsinθ,dy=bcosθdθ
1/2∮(l)xdy-ydx
=1/2∫(0~2π)(acosθ*bcosθ+bsinθ*asinθ)dθ
=1/2∫(0~2π)abdθ
=πab
請笑納。
2樓:匿名使用者
ab0c×9=c0ba
顯然a=1
因為1000×9=9000
所以c=9
故原式子變為:1b09×9=90b1
顯然b=0或者b=1,否則1b09×9會變成5位數①當b=0時,1009×9=9081≠9001 故b=0 不成立
②當b=1時,1109×9=9981≠9011 故b=1 不成立
故原式無解
3樓:匿名使用者
已知重物上升的距離和時間,根據公式v= st可求重物上升的速度,所做的有用功根據公式w=gh可求,根據公式w=fs可求總功,有用功與總功的比值就是千斤頂的機械效率.解答:解:重物上升的速度v= ht= 0.
04m2s=0.02m/s,
所做的有用功w有用=gh=1000n×0.04m=40j,總功w總=fs=100n×0.5m=50j,所以千斤頂的機械效率是η= w有用w總×100%= 40j50j×100%=80%.
故答案為:0.02;40;80%.點評:本題考查速度、有用功、總功和機械效率的計算,關鍵是公式及其變形的靈活運用,解題過程中要注意單位的換算.
求指教對座標的曲線積分計算橢圓 x=acosθ y=bsinθ 所圍成的面積a
4樓:匿名使用者
如果對公式:面積a=∬d dxdy=(1/2)∮l xdy-ydx很明白,那麼後面的運算就應該沒問題。
把x=acosθ,dx=-asinθdθ;y=bsinθ,dy=bcosθdθ;代入(1/2)∮l(xdy-ydx)即得。
5樓:
^x = a*cosθ,則 dx = a * (-sinθ) * dθ
y = b*sinθ,則 dy = b * cosθ * dθ那麼,x*dy - y*dx
=(a*cosθ)*(b*cosθ*dθ) - (b*sinθ)*(-a*sinθ*dθ)
=ab*(cosθ)^2 *dθ + ab *(sinθ)^2 *dθ
=ab * [(cosθ)^2 + (sinθ)^2] * dθ=ab * dθ
下面再繼續對 dθ 進行積分就應該不是難題了吧?
求橢圓x=acosθ,y=sinθ所圍成圖形的面積a 為什麼a=1/2∮xdy-ydx?
6樓:丶鹿笙
這是格林公式的應用… 高斯公式是另一個好嗎
計算曲線積分(ydx-xdy)/2(x^2+y^2),其中l為圓周(x-1)^2+y^2=2。
7樓:匿名使用者
方法為格林公式,但是注意原來的被積函式在l圍成的區域中包含奇點(0,0),所以需要補上曲線l1以挖空奇點,參考解法:
8樓:116貝貝愛
解:把bai
圓的方程x²+y²=1改寫成引數方du程:x=cost,y=sint,dx=-sintdt,dy=costdt
s=(1/2)∮xdy-ydx
=(1/2)∫zhi‹0,2πdao›(cos²t+sin²t)dt=(1/2)∫‹0,2π›dt
=(1/2)t︱‹0,2π›
=π 故∮xdy-ydx
=2π求曲線積回分的方答法:
設有一曲線形構件佔xoy面上的一段曲線 ,設構件的密度分佈函式為ρ(x,y),設ρ(x,y)定義在l上且在l上連續,求構件的質量。對於密度均勻的物件可以直接用ρv求得質量;對於密度不均勻的物件,就需要用到曲線積分,dm=ρ(x,y)ds;所以m=∫ρ(x,y)ds;l是積分路徑,∫ρ(x,y)ds就叫做對弧長的曲線積分。
兩種曲線積分的區別主要在於積分元素的差別;對弧長的曲線積分的積分元素是弧長元素ds;例如:對l的曲線積分∫f(x,y)*ds 。對座標軸的曲線積分的積分元素是座標元素dx或dy,例如:
對l’的曲線積分∫p(x,y)dx+q(x,y)dy。公式:
9樓:覓古
這個先用格林公式求解會方便一點兒,化為二重積分,然後用圓的引數去求二重積分
高數曲線積分題求解
10樓:匿名使用者
若積分域能圍成閉bai區域,du就可用格林公式:
zhil:{ x = acosθ
dao{ y = bsinθ
面積 = ∫版∫d dxdy
= (1/2)∮l xdy - ydx
= (1/2)∫(0→權2π) [(acosθ)(bcosθ) - (bsinθ)(- asinθ)] dθ
= (1/2)∫(0→2π) (abcos²θ + absin²θ) dθ
= (1/2)(ab)(2π)
= πab
已知P為橢圓x 2 a 2 y 2 b 2 1 ab
解 以橢圓長軸為直徑的圓,圓心為 0,0 r a,它的方程為 x y a 設p x0,y0 f1 c,0 以pf1為直徑的圓的圓心m c x0 2,y0 2 由焦半徑公式,可得pf1 a ex0,則r0 a ex0 2 圓的方程為 x c x0 2 y y0 2 a ex0 4 聯立方程組 x y ...
計算曲面積分z 2x 4 3 y dS其中為平面x 4 1在第一卦限部
小陽同學 平面方程兩邊乘以4,得z 2x 4 3y 4,所以積分 z 2x 4 3y ds 4ds,接下來計算平面與三座標軸的三個交點圍成的 的面積即可 方法不唯一,比如計算四面體的體積,而原點到平面的距離可求,所以三角形的面積可求。也可以把曲面積分化為二重積分,求出z對x,y的偏導數,ds 61 ...
已知圓C的方程為x 2 y 2 2x 4y m 0其中m
x 2 y 2 2x 4y m 0和x 2y 4 0聯立得5y 2 16y m 8 0 利用韋達定理y1 y2 16 5 y1 y2 8 m 5 利用直線方程x1 x2 4 2y1 4 2y2 16 8 y1 y2 4y1 y2 4m 5 16 5 又om on所以x1 x2 y1 y2 4m 5 ...