1樓:sky丶小程
這個導數其實不難,把基本的求導公式記好啊!例如:(sinx)′=cosx (tanx)′=-csc2x
(x)′=1 (x2)′=2x
等等一些常用的基本導數,例題在書上剛剛學習導數的時候有,那些例題一般都是很簡單的,你可以不看答案先做一下。
複合函式的求導法則
複合函式求導的前提:複合函式本身及所含函式都可導
法則1:設u=g(x)
f'(x)=f'(u)*g'(x)
法則2:設u=g(x),a=p(u)
f'(x)=f'(a)*p'(u)*g'(x)
記住這個就好了。例題:y=sin2x y′=cos2x*(2x)′=2cos2x
1、求:函式f(x)=(3x+2)^3+3的導數
設u=g(x)=3x+2
f(u)=u^3+3
f'(u)=3u^2=3(3x+2)^2
g'(x)=3
f'(x)=f'(u)*g'(x)=3(3x+2)^2*3=9(3x+2)^2
2、求f(x)=√[(x-4)^2+25]的導數
設u=g(x)=x-4,a=p(u)=u^2+25
f(a)=√a
f'(a)=1/(2√a)=1/
p'(u)=2u=2(x-4)
g'(x)=1
f'(x)=f'(a)*p'(u)*g'(x)=2(x-4)/=(x-4)/√[(x-4)^2+25]
課本其實是最好的例題了,因為上面的題目一般都不怎麼難的,希望你可以進步,加油!要有信心啊!
2樓:匿名使用者
你要是願意的話,我願意把導數給你講一遍,你挑個時間吧,就這個假期,導數不會的一般都是沒看明白,我給人補課時候,總結出來,導數這是個新東西,很難接受了,所以你要多做題,我願意幫助你,(*^__^*) 嘻嘻……
3樓:匿名使用者
建立一個微分,極限的思想。多刷題,最好是找本高等數學看看,裡面講得很詳細,有些高中糊弄過去的知識都有,認識高了,自然就回了,有利於高考。
4樓:匿名使用者
上課認真聽講,課後多聯絡。準備錯題本。有機會就像老師一樣用語言的形式講出來。加深記憶。
5樓:中子
基礎一定要學好,對於新的東西一定要打好基礎,說白了就是多做些相關的題目加深對基本概念的理解。這樣看起來很費時間 有時候甚至是自找麻煩,但當你用時就會明白自己的執著見效了。。。。
高中數學導數如何學習
6樓:v英國皇宮
一、高階導
數的求法
1、直接法:由高階導數的定義逐步求高階導數。
一般用來尋找解題方法。
2、高階導數的運演算法則:
(二項式定理)
3、間接法:利用已知的高階導數公式,通過四則運算,變數代換等方法。
注意:代換後函式要便於求,儘量靠攏已知公式求出階導數。
二、口訣
為了便於記憶,有人整理出了以下口訣:
常為零,冪降次
對倒數(e為底時直接倒數,a為底時乘以1/lna)
指不變(特別的,自然對數的指數函式完全不變,一般的指數函式須乘以lna)
正變餘,餘變正
切割方(切函式是相應割函式(切函式的倒數)的平方)
割乘切,反分式
擴充套件資料:
單調性(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函式駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。
(2)若已知函式為遞增函式,則導數大於等於零;若已知函式為遞減函式,則導數小於等於零。
根據微積分基本定理,對於可導的函式,有:
如果函式的導函式在某一區間內恆大於零(或恆小於零),那麼函式在這一區間內單調遞增(或單調遞減),這種區間也稱為函式的單調區間。導函式等於零的點稱為函式的駐點,在這類點上函式可能會取得極大值或極小值(即極值可疑點)。
進一步判斷則需要知道導函式在附近的符號。對於滿足的一點,如果存在使得在之前區間上都大於等於零,而在之後區間上都小於等於零,那麼是一個極大值點,反之則為極小值點。
x變化時函式(藍色曲線)的切線變化。函式的導數值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。
凹凸性可導函式的凹凸性與其導數的單調性有關。如果函式的導函式在某個區間上單調遞增,那麼這個區間上函式是向下凹的,反之則是向上凸的。
如果二階導函式存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函式是向下凹的,反之這個區間上函式是向上凸的。曲線的凹凸分界點稱為曲線的拐點。
7樓:匿名使用者
相對來說導數還是比較容易的,因為它的幾乎所有題目,都是一個套路。
首先要把幾個常用求導公式記清楚;
然後在解題時先看好定義域;對函式求導,對結果通分(這樣會讓下面判斷符號比較容易);
接下來,一般情況下,令導數=0,求出極值點;在極值點的兩邊的區間,分別判斷導數的符號,是正還是負;正的話,原來的函式則為增,負的話就為減,然後根據增減性就能大致畫出原函式的影象,根據影象就可以求出你想要的東西,比如最大值或最小值等。
如果特殊情況,導數本身符號可以直接確定,也就是導數等於0無解時,說明在整個這一段上,原函式都是單調的。如果導數恆大於0,就增;反之,就減。
無論大題,小題,應用題,都是這個套路。應用題的話只是需要認真理解下題意,實際的操作比普通的導數大題還簡單,因為基本不涉及到引數的討論。
這是我的經驗,希望對你有幫助。
高中導數怎樣才能學好,前期哪些知識是基礎?
8樓:匿名使用者
高中bai導數的基礎肯定是du
最開始學的函式部分的zhi知識,主要是相關dao的思維模式要把內
握好,也經常有人說高容中數學最難的就是函式,也可以看出函式對於學好導數的重要性。至於如何學好,提一下個人的觀點,導數出題一般有一定的規律性,當然偶爾在高考中出題者也會別出心裁,我認為,學生基礎要把有規律的幾種常見題型理解透即可,並要多多練習,練習程度要依你個人程度和省份出題情況來看,如果高考出現了所謂怪題,那大部分人也做不出,如果你智商夠用更好,做不出也沒有太大損失。如果你能告訴我你的目標所在和所在省份,我可以給出更具體的建議。
高中數學導數怎麼樣才能學好?
9樓:匿名使用者
以後問問題最好能具體點,具體到哪個知識點你有疑問,甚至具體題目。你問怎樣才能學好,你說該怎麼回答啊。我說多做題,上課認真聽講,基本和沒說一樣吧。
比方我問你解析幾何怎樣才能學好,你怎麼回答
10樓:粉萌冷兔兔
您好幾何和代數沒有任何關係,建議複習一下函式這一方面。不知道您的函式基礎如何,如果不好的話 不要怕笑話,從初二一次函式開始複習。一次函式,二次函式,反比例函式,三角函式影象與三角恆等變換,基本初等函式(指數函式對數函式冪函式),熟練掌握各種函式影象與性質!
一看就知道看書影象性質。導數公式熟練記憶,導數影象記憶。導數單調性多做題
11樓:學魁榜丶姜浩
導數基本知識的學習:極限和導數嚴格來說是高等數學知識,因此從推理證明的角度去學習掌握導數的相關知識對於一般的高中同學來講會非常困難。
但是,如果將導數視作一種特殊的公式並將其加以靈活記憶,那麼這部分基礎知識將成為高中數學函式知識中比較容易掌握的那部分。
導數知識在數學考試中的應用技巧:導數知識被壓縮到高中課程以後,考試對其進行檢查的難度也相對於高等數學有所降低,因此大家只需要掌握一些特定的技巧,就能在考試中做到對導數知識的靈活應用,進而更為高效地解決壓軸題中的函式分析類問題。
第一步掌握導數基本知識
訣竅一:導數是檢驗函式變化趨勢的唯一標準
在高中,比較函式單調性的方法至少在三種以上,其中影象法和作差求商法是大家最早接觸到的辦法,也相對比較直觀。
但是,這些方法僅限於能夠計算函式值和存在已知函式影象的幾種基本函式,例如二次函式的拋物線、三角函式的正弦曲線等,但是對於更為一般的、以表示式給出的函式來說,這些方法基本上都是無效的——大部分高考壓軸題中的函式,既沒有辦法通過計算函式值來比較特定區間內的大小,也沒有辦法通過拼湊基本函式的圖來判斷其變化趨勢,因此本質上,高一和所學的函式分析知識在高考中幾乎很難考到,而對於一般的函式表示式,能夠準確**其變化趨勢的分析方法,在高中階段有且僅有導數。
因此,大家在進入高考總複習之前必須有意識地培養自己善於“揚棄”的習慣,而在函式分析這部分知識中,使用求導完全代替影象法和作商法就是揚棄的第一步!
在此基礎上,必須堅定這樣的一個信念:
只要給定了函式的表示式,那麼通過某種形式的求導,它的變化趨勢一定能和我們高中所學的基本函式模型產生聯絡,因此這些問題一定是可以求解的!
不過需要提醒大家的是,求導的過程本質上是使用一個更加簡單的、可以判斷零點特性的函式表示已知的複雜函式的過程,因此只有對高中課本里的各類基本函式的單調性和零點特性有充分的瞭解,才能實際保證這部分題目能夠得到正確的答案。
因此,函式求導的知識,對於認真掌握教材基本知識的同學而言是較為簡單的,而對於沒能理解教材基本要點的同學來說,即便是認真掌握了求導公式也未必能在這部分取得相應的突破。
12樓:j機械工程
把公式背會,多做幾題,你就會了。。。。
高中數學導數在必修幾?是哪一章?
13樓:金果
不在必修部分,在選修1-1第三章以及選修2-2第一章。
微積分的創立是數學發展的里程碑,它的發展及廣泛應用,開創了向近代數學過渡的新時期,它為研究變數與函式提供了重要的方法和手段。導數的概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。
在本模組中,學生將通過大量例項,經歷由平均變化率到瞬時變化率的過程,刻畫現實問題,理解導數的含義,體會導數的思想及其內涵;應用導數探索函式的單調、極值等性質及其在實際中的應用,感受導數在解決數學問題和實際問題中的作用,體會微積分的產生對人類文化發展的價值。
擴充套件資料
導數的定義:
設函式y=f(x)在點x0的某個鄰域內有定義,當自變數x在x0處有增量δx,(x0+δx)也在該鄰域內時,相應地函式取得增量δy=f(x0+δx)-f(x0)。
如果δy與δx之比當δx→0時極限存在,則稱函式y=f(x)在點x0處可導,並稱這個極限為函式y=f(x)在點x0處的導數記作
需要指出的是:
導函式:
如果函式y=f(x)在開區間內每一點都可導,就稱函式f(x)在區間內可導。這時函式y=f(x)對於區間內的每一個確定的x值,都對應著一個確定的導數值。
這就構成一個新的函式,稱這個函式為原來函式y=f(x)的導函式,記作y'、f'(x)、dy/dx或df(x)/dx,簡稱導數。導數是微積分的一個重要的支柱。牛頓及萊布尼茨對此做出了貢獻。
幾何意義:
函式y=f(x)在x0點的導數f'(x0)的幾何意義:表示函式曲線在點p0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函式曲線在這一點上的切線斜率)。
高中導數函式單調性問題,高中數學有關導數與單調性的問題
高中數學莊稼地 你說的太對了。增函式不一定就是大於等於零 但是有一種可能,就是等於0的點只有個別點。比如y x 3.是增函式,在 0,0 導數是0,但是隻有這麼一個點,他仍然是單調的。比如y 1,不增不減,導數 0.因為這樣的點有無窮多個。 神話別 a存在 且a 1或2或3或4 解 求導後有 f x...
高中數學導數的問題很急啦,高中數學導數的問題很急
這個題目的答案有很多個種表示形式,不一定要表示 1 n 1 n 1 的形式,就是在大學裡,也不用這樣表示的 這種求導可以用以下法則 uvw u vw uv w uvw y x 1 x 2 x n y x 1 x 2 x n x 1 x 2 x n x 1 x 2 x n x 2 x n x 1 x ...
高中數學導數問題
吙龖 我想額外說的是,此答案第二問為恆成立問題,而你問的是能成立問題。注意區分。需要的話請採納我給你解答 謝謝 猥瑣的小比 解 1 f x 1 x a 2x 依題意有f 1 0,即a 3 2 故f x ln x 3 2 x 2 從而f x 2x 2 3x 1 x 3 2 2x 1 x 1 x 3 2...