什麼是微積分,請解釋,什麼叫微積分?(請給予詳細的解釋)

時間 2022-07-25 00:00:19

1樓:色浪若幻

是計算變數和變率的特殊數學方法。什麼是微積分?它是一種數學思想,『無限細分』就是微分,『無限求和』就是積分。

無限就是極限,極限的思想是微積分的基礎,它是用一種運動的思想看待問題。比如,子彈飛出槍膛的瞬間速度就是微分的概念,子彈每個瞬間所飛行的路程之和就是積分的概念

如果將整個數學比作一棵大樹,那麼初等數學是樹的根,名目繁多的數學分支是樹枝,而樹幹的主要部分就是微積分。微積分堪稱是人類智慧最偉大的成就之一。從17世紀開始,隨著社會的進步和生產力的發展,以及如航海、天文、礦山建設等許多課題要解決,數學也開始研究變化著的量,數學進入了「變數數學」時代,即微積分不斷完善成為一門學科。

整個17世紀有數十位科學家為微積分的創立做了開創性的研究,但使微積分成為數學的一個重要分支的還是牛頓和萊布尼茨。

什麼叫微積分?(請給予詳細的解釋)

2樓:江南哭哭生

那是一門學科.包括微分和積分.

3樓:匿名使用者

微分加積分,主講函式的變化率,導數發展發展就是了

微積分中 ∫是什麼意思

4樓:雨後彩虹

積分符號「∫」由萊布尼茨所創,它是拉丁語「總和」(summa)的第一個字母s的伸長(和∑有相同的意義), 「∮ 」 為圍道積分 。

微積分是數學的一個基礎學科,內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。

積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

擴充套件資料

從17世紀開始,隨著社會的進步和生產力的發展,以及如航海、天文、礦山建設等許多課題要解決,數學也開始研究變化著的量,數學進入了「變數數學」時代。整個17世紀有數十位科學家為微積分的創立做了開創性的研究,但使微積分成為數學的一個重要分支的還是牛頓。

1、求曲線的切線問題

這個問題本身是純幾何的,而且對於科學應用有巨大的重要性。

由於研究天文的需要,光學是十七世紀的一門較重要的科學研究,透鏡的設計者要研究光線通過透鏡的通道,必須知道光線入射透鏡的角度以便應用反射定律,這裡重要的是光線與曲線的法線間的夾角,而法線是垂直於切線的,所以總是就在於求出法線或切線。

另一個涉及到曲線的切線的科學問題出現於運動的研究中,求運動物體在它的軌跡上任一點上的運動方向,即軌跡的切線方向 。

2、求長度、面積、體積、與重心問題等

這些問題包括,求曲線的長度(如行星在已知時期移動的距離),曲線圍成的面積,曲面圍成的體積,物體的重心,一個相當大的物體(如行星)作用於另一物體上的引力。

實際上,關於計算橢圓的長度的問題,就難住數學家們,以致有一段時期數學家們對這個問題的進一步工作失敗了,直到下一世紀才得到新的結果。當分割的份數越來越多時,所求得的結果就越來越接近所求的面積的精確值。

但是,應用窮竭法,必須添上許多技藝,並且缺乏一般性,常常得不到數字解。當阿基米德的工作在歐洲聞名時,求長度、面積、體積和重心的興趣復活了。窮竭法先是逐漸地被修改,後來由於微積分的創立而根本地修改了。

3、求最大值和最小值問題(二次函式,屬於微積分的一類)

例如炮彈在炮筒裡射出,它執行的水平距離,即射程,依賴於炮筒對地面的傾斜角,即發射角。一個「實際」的問題是:求能夠射出最大射程的發射角。

5樓:匿名使用者

這是積分符號,意思是把符合條件的一大堆趨於0的數求和,然後得到一個值或者一個函式的符號。

6樓:鄔長征稱戊

微積分是高等數學中研究函式的微分、積分以及有關概念和應用的分支。

它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。

微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。

像瞬時速度v=△x/△t就是由微分推匯出來的。

而導數的幾何意義就是求函式影象的斜率。

積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

像動能定理就是由積分推出。

高中課程裡涵蓋初等微積分內容

7樓:藩彩妍喬莎

數學中的基礎分支。內容主要包括函式、極限、微分學、積分學及其應用。函式是微積分研究的基本物件,極限是微積分的基本概念,微分和積分是特定過程特定形式的極限。

17世紀後半葉,英國數學家i.牛頓和德國數學家g.w.

萊布尼茲,總結和發展了幾百年間前人的工作,建立了微積分,但他們的出發點是直觀的無窮小量,因此尚缺乏嚴密的理論基礎。19世紀a.-l.

柯西和k.魏爾斯特拉斯把微積分建立在極限理論的基礎上;加之19世紀後半葉實數理論的建立,又使極限理論有了嚴格的理論基礎,從而使微積分的基礎和思想方法日臻完善。

8樓:守芷雲班赫

微分就是討論函式的區域性變化(變化率),不定積分就是微分的分運算,定積分是求一個函式在某一區間上的和,變上限積分是定積分中的區間右邊界是變數裡的一種函式(關於上限的函式)

例如,位移對時間的微分是速度,速度對時間的微分是加速度.知道一個物體的速度可以求出無數種位移-時間關係(起始位置不同),這就是不定積分;知道速度可以求出一位時間內的位移變化量,這就是定積分;知道速度,知道起始位置,可以求出任意時刻的位置,這就是變上限積分.

以上統稱微積分.

9樓:匿名使用者

微積分中 ∫是積分號

由拉丁文summa,第一個字母s,拉長後所得。

表示求連續的和。

10樓:匿名使用者

微積分中 ∫ 是積分符號。是用summation中的s拉長後表示的。

11樓:芮多魏奇正

微積分(calculus)是高等數學中抄研究函式的微分bai(differentiation)、積分du(integration)以及有關概念和應用的數學分zhi支。它是數dao學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。

微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

求大神通俗的講解什麼是微積分

12樓:匿名使用者

確來說,dx、dy這個微分的概念是以其無窮小作為定義的,只是dy/dx可以表示導數、斜率等等因素常被組合使用,並不是一個整體.

在一個函式定義下,一個x的變數無窮小dx引起的y的變數也為無窮小dy或者為0,但這裡將0和無窮小作區分,就是微分的意義.

積分的定義其實就是個無數個無窮小疊加,單個單元是函式值*變數的無窮小量,以表示函式值的疊加(在座標系下就是小矩形面積的疊加)

這個高數課本上表述的很清楚,如果再不清楚,可以看看一些物理上簡單的使用微分積分的案例.

微積分是什麼?誰能說得通俗易懂點?

13樓:漫隨流水

微積分是高等數學中研究函式的微分、積分以及有關概念和應用的數學分支。是數學的一個基礎學科,內容主要包括極限、微分學、積分學及其應用。

微分學包括求導數的運算,是一套關於變化率的理論,它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

微積分的創立:

十七世紀下半葉,在前人工作的基礎上,英國大科學家牛頓和德國數學家萊布尼茨分別在自己的國度裡獨自研究和完成了微積分的創立工作,雖然這只是十分初步的工作。

他們的最大功績是把兩個貌似毫不相關的問題聯絡在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。

牛頓和萊布尼茨建立微積分的出發點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現時數學中分析學這一大分支名稱的**。牛頓研究微積分著重於從運動學來考慮,萊布尼茨卻是側重於幾何學來考慮的。

14樓:雨落無痕

微積分包括微分學和積分學,其實就是高等數學。

微分就是把研究的物件分成微小的部分進行研究,而積分就是把微小的部分再累加起來研究。這是最簡單的說法,要是要完全理解它的原理,那是幾本書都說不完的。微積分的應用非常廣泛,最容易理解的應用是求曲線的長度,求不規則圖形的面積,還有求曲線的切線。

微積分有何用處?

15樓:111111前的

1、用於**。

微積分,很多人認為,大學畢業以後,除了從事相關職業的人,工作和生活中根本用不上。事實上,恰恰相反,微積分在普通的工作和生活中用處非常大。微積分不僅可以運用在統計、工程、管理等各個方面,對於老百姓理財,也是大有裨益的。

比如**,學點微積分,可以炒得更好。

2、用於醫療。

數學對網際網路、對醫療都很有用。健康大資料模型將顛覆傳統醫學的思路,依託海量儲存和計算能力,實現精確「打擊」,為老百姓量身定做私人診療方案,從而達到健康管理和預防疾病的目的。

16樓:叫那個不知道

微積分學的發展與應用幾乎影響了現代生活的所有領域。它與大部分科學分支關係密切,包括精算、計算機、統計、工業工程、商業管理、醫藥、護理、人口統計,特別是物理學;經濟學亦經常會用到微積分學。幾乎所有現代科學技術,如:

機械、水利、土木、建築、航空及航海等工業工程都以微積分學作為基本數學工具。微積分使得數學可以在(非常數)變化率和總改變之間互相轉化,讓我們可以在已知其中一者時求出另一者。

物理學大量應用微積分;古典力學、熱傳和電磁學都與微積分有密切聯絡。已知密度的物體質量、物體的轉動慣量、物體在保守力場的總能量都可用微積分來計算。牛頓第二定律便是微積分在力學中的一個應用例子:

它的最初陳述使用了「變化率」一詞,而「變化率」即是指導數。

陳述大意為:物體動量的變化率等於作用在物體上的力,而且朝同一方向。今天常用的表達方式是 =m\mathbf } ,它包括了微分,因為加速度是速度的導數,或是位置向量的二階導數。

已知物體的加速度,我們就可以得出它的路徑。

麥克斯韋爾的電磁學理論和愛因斯坦的廣義相對論都應用了微分。化學使用微積分來計算反應速率,放射性衰退。生物學用微積分來計算種群動態,輸入繁殖率和死亡率來模擬種群改變。

微積分可以與其他數學分支並用。例如,可與線性代數並用,來求得某區域中一組點的「最佳」線性近似。它也可以用在概率論中,來確定由給定密度函式所給出的連續隨機變數之概率。

在解析幾何對函式影象的研究中,微積分可以用來求得最大值、最小值、斜率、凹度、拐點等。

格林公式將一個封閉曲線上的線積分,與一個邊界為且平面區域為的雙重積分聯絡起來。這一點被應用於求積儀這個工具,它用於量度在平面上的不規則圖形面積。例如,它可以在設計住宅擺設時,計算不規則的花瓣床、游泳池所佔的面積。

在醫療領域,微積分可以計算血管最優支角,將血流最大化。通過藥物在體內的衰退規律,微積分可以推匯出服藥規律。

在經濟學中,微積分可以通過計算邊際成本和邊際收益來確定最大利潤。

微積分也被用於尋找方程的近似值;實踐中,它是在各種應用裡解微分方程、求根的標準做法。典型的方法有牛頓法、定點迭代法、線性近似等。比如:

宇宙飛船利用一種尤拉方法的變體來求得零重力環境下的近似航線。

擴充套件資料

早期的微積分概念來自於埃及、希臘、中國、印度、伊拉克、波斯、日本,但現代微積分來自於歐洲。17世紀時,艾薩克·牛頓與戈特弗裡德·萊布尼茨在前人的基礎上提出微積分的基本理論。微積分基本概念的產生是建立在求瞬間運動和曲線下面積這兩個問題之上的。

微分應用包括對速度、加速度、曲線斜率、最優化等的計算。積分應用包括對面積、體積、弧長、質心、做功、壓力的計算。更高階的應用包括冪級數和傅立葉級數等。

微積分也使人們更加精確地理解到空間、時間和運動的本質。多個世紀以來,數學家和哲學家都在爭論除以零或無限多個數之和的相關悖論。這些問題在研究運動和麵積時常常出現。

古希臘哲學家埃利亞的芝諾便給出了好幾個著名的悖論例子。微積分提供了工具,特別是極限和無窮級數,以解決該些悖論。

微積分的定義,微積分是什麼?

夜璇宸 微積分是數學的一個基礎學科 是高等數學中研究函式的微分 differentiation 積分 integration 以及有關概念和應用的數學分支。內容主要包括極限 微分學 積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函式 速度 加速度和曲線的斜率等均可用一套通用的...

什麼是微積分微分積分導數極限,微積分包括哪些內容,有極限,導數,還有什麼 要全

在慕田峪長城插秧的茄子 平面幾何是平直的幾何 我們可以把曲線看成是很短的直線接起來的,可以把曲面 比如球面 看成是很小的平面拼起來的,這就是微積分的基本思想。有了微積分,我們可以處理彎曲空間的幾何問題時空也是彎曲的,要懂時空,你得懂微分幾何 qb大王 高中的,權當興趣吧 微積分 微分 積分 導數 極...

什麼是高等微積分,高等數學 微積分中積分元素的含義是什麼 比如ds,dS,dxdy,d

初等微積分基本上就是理工科高等數學中的微積分部分,比起理科數學分析,缺少實數理論,連續 積分 級數的一些深入內容,比如一致連續 一致收斂 達布和等等,高等微積分是美國人的說法,除了要補上我國數學分析的基礎理論外,還要講授黎曼 斯蒂爾傑斯積分 勒貝格測度 勒貝格積分的知識,就是說,要包含我國實變函式課...