減法和除法有結合律和交換律嗎

時間 2021-09-07 16:10:24

1樓:心誠則靈

減法是:減法性質

一個數連續減去兩個數,可以用這個數減去兩個數的和。

字母公式:a-b-c=a-(b+c)

例題:12-6-4

=12-(6+4)

=12-10

=2除法是:除法性質

商不變,除法性質的概念

摺疊概念

除法性質的概念為:一個數連續除以兩個數,可以先把後兩個數相乘,再相除。

字母公式:a÷b÷c=a÷(b×c)

題例(簡算過程):20÷8÷1.25

=20÷(8×1.25)

=20÷10

=2摺疊商不變的規律

概念:被除數和除數同時乘上或除以相同的數(0除外)它們的商不變。 分數的基本性質:

分數的分子和分母同時乘上或除以相同的數(0除外),分數的大小不變。比也是一樣的:兩個相比較的數擴大或縮小相同的倍數,比值不變。

字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)

題例:80÷125

=(80×8)÷(125×8)

=640÷1000

=0.64

2樓:匿名使用者

減法實際上是省略加號的代數和,可以運用加法的運算律,一是,不叫減法的運算律,通稱為加法的運算律;二是注意符號變化;

如,10+0.1-5=10-5+0.1 (加法交換律)10-2-5 =10+(-2-5) (加法結合律)除法也如此,變除為乘,再運用乘法的運算律。

減法和除法有結合律和交換律嗎??????????????

3樓:

減法是:減法性質

一個數連續減去兩個數,可以用這個數減去兩個數的和。

字母公式:a-b-c=a-(b+c)

例題:12-6-4

=12-(6+4)

=12-10

=2除法是:除法性質

商不變,除法性質的概念

1、四則混合運算順序:同級運算時,從左到右依次計算;兩級運算時,先算乘除,後算加減。

有括號時,先算括號裡面的,再算括號外面的;有多層括號時,先算小括號裡的,再算中括號裡面的,再算大括號裡面的,最後算括號外面的。

2、乘法是加法的簡便運算,除法是減法的簡便運算。減法與加法互為逆運算,除法與乘法互為逆運算。

幾個加數相加,可以任意交換加數的位置;或者先把幾個加數相加再和其他的加數相加,它們的和不變。

一個數減去兩個數的和,等於從這個數中依次減去和裡的每一個加數。

4樓:宇宙不安協會

前兩天參加了一次人教版四年級數學網路教研活動,主題是:交流第三單元“運算定律與簡便計算的教學體會”。一位教師談到在教學加法交換律的時候就注意了對加、減、乘、除四種運算進行了溝通整理,也就是讓學生認識到在加、減、乘、除四種運算中都用到了交換律。

之後,有一位老師對這位老師提前滲透交換律在減法運算中的運用的做法表示了贊同,因為在後面教學連減的簡便運算中會用到。對此我表達了我的不同觀點:加法交換律、乘法交換律都是相對於兩個數來說的,而減法和除法運算中減數與被減數,除數與被除數交換位置結果會變化的,所以我認為減法、除法運算中運用了交換律的說法是有問題的。

而這位老師說的減法、除法運算中用到了交換律,我也知道他是指的連減和連除算式中減數與減數,除數與除數交換了位置,但能說減法和除法運算中運用了交換律嗎?長這麼大可從來沒聽說過有減法交換律、除法交換律。隨後這位老師又對他的教學進行了補充說明,他從加法交換律的教學時就是從連加算式引入的,他反問:

難道交換律一定是僅限於兩個數交換的規律嗎?參加完這個活動我就一直在思考:他們說得確實也有道理,難道是我的思維太狹隘了嗎?

前面在教學乘法交換律、結合律時引導學生**得出的減法、除法運算中沒有交換律、結合律的結論難道說錯了嗎?後來我和我們教研組的老師交流這個問題,最後我們統一了思想:我們認為,交換律得是算式中任意兩個數都可交換位置的規律。

如:連加、連乘算式中任意兩個數交換位置結果都不變,而連減、連除算式只是減數與減數,除數與除數可交換位置,雖然說具有部分可交換的這種性質但不能說運用了“交換律”,所以我們認為減法和除法運算中運用了交換律的說法是欠妥的。

5樓:索秋蕁

除法和減法的結合律也就是加括號,但若括號前面是減號、除號,括號裡要變符號。除法的分配律,除以一個數就等於乘以這個數的倒數。只要減法考慮到相反數,除法考慮到倒數,就行了

6樓:橋聲共鳴

把減法看成加上原被減數的相反數,把除法看成乘以原被除數的倒數。就行了。

7樓:戴涵柳

1-1=1-1

0-0=0-0

3÷3=3÷3

*⸜( •ᴗ• )⸝*

減法和除法有結合律和交換律嗎?

8樓:心誠則靈

減法是:減法性質

一個數連續減去兩個數,可以用這個數減去兩個數的和。

字母公式:a-b-c=a-(b+c)

例題:12-6-4

=12-(6+4)

=12-10

=2除法是:除法性質

商不變,除法性質的概念

摺疊概念

除法性質的概念為:一個數連續除以兩個數,可以先把後兩個數相乘,再相除。

字母公式:a÷b÷c=a÷(b×c)

題例(簡算過程):20÷8÷1.25

=20÷(8×1.25)

=20÷10

=2摺疊商不變的規律

概念:被除數和除數同時乘上或除以相同的數(0除外)它們的商不變。 分數的基本性質:

分數的分子和分母同時乘上或除以相同的數(0除外),分數的大小不變。比也是一樣的:兩個相比較的數擴大或縮小相同的倍數,比值不變。

字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)

題例:80÷125

=(80×8)÷(125×8)

=640÷1000

=0.64

9樓:慶皖靜

在正數域裡,減法沒有交換率和結合率,只有引入負數,將減法轉換成加法,即代數和的概念,才能對減法運用交換率結合率。同理引入分數,將除法轉換成乘法,才能應用乘法交換率結合率

減法和除法有結合律和交換律嗎

心誠則靈 減法是 減法性質 一個數連續減去兩個數,可以用這個數減去兩個數的和。字母公式 a b c a b c 例題 12 6 4 12 6 4 12 10 2除法是 除法性質 商不變,除法性質的概念 摺疊概念 除法性質的概念為 一個數連續除以兩個數,可以先把後兩個數相乘,再相除。字母公式 a b ...

乘法的交換律,乘法的結合律公式是什麼?

乘法交換律的公式 a b c a c b 乘法結合律的公式 a b c a b c 乘法的交換律和結合律公式 乘法的交換律結合律和分配律公式 a b c ab ac。乘法交換律是一種計算定律,兩個數相乘,交換因數的位置,它們的積不變,叫做乘法交換律,用字母表示a b bxa。一般在只有乘法的算式計算...

用分配律結合律,交換律簡便計算,用乘法分配律乘法結合律,乘法交換律來簡便計算。

1 乘法分配律公式 a b c a c b c 2 乘法結合律公式 a b c a b c 3 乘法交換律公式 a b b a 4 加法結合律公式 a b c a b c 拓展資料 整數的乘法運算滿足 交換律,結合律,分配律,消去律。隨著數學的發展,運算的物件從整數發展為更一般群。群中的乘法運算不再...