如何學好高中數學必修一基本初等函式

時間 2021-09-02 08:46:22

1樓:

五類基本初等函式,從最基本的定義域,值域開始。逐漸加深到單調性,奇偶性,週期性。

並對五類基本初等函式的影象做到了然於胸。最後就是做題,融會貫通。

2樓:李靜

基本初等函式

一、指數函式

(一)指數與指數冪的運算

1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.

當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這裡 叫做根指數(radical exponent), 叫做被開方數(radicand).

當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合併成± ( >0).

由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。

注意:當 是奇數時, ,當 是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

,0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(1) · ;

(2) ;

(3) .

(二)指數函式及其性質

1、指數函式的概念:一般地,函式 叫做指數函式(exponential ),其中x是自變數,函式的定義域為r.

注意:指數函式的底數的取值範圍,底數不能是負數、零和1.

2、指數函式的圖象和性質

a>10圖象特徵

函式性質

向x、y軸正負方向無限延伸

函式的定義域為r

圖象關於原點和y軸不對稱

非奇非偶函式

函式圖象都在x軸上方

函式的值域為r+

函式圖象都過定點(0,1)

自左向右看,

圖象逐漸上升

自左向右看,

圖象逐漸下降

增函式減函式

在第一象限內的圖象縱座標都大於1

在第一象限內的圖象縱座標都小於1

在第二象限內的圖象縱座標都小於1

在第二象限內的圖象縱座標都大於1

圖象上升趨勢是越來越陡

圖象上升趨勢是越來越緩

函式值開始增長較慢,到了某一值後增長速度極快;

函式值開始減小極快,到了某一值後減小速度較慢;

注意:利用函式的單調性,結合圖象還可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,則 ; 取遍所有正數當且僅當 ;

(3)對於指數函式 ,總有 ;

(4)當 時,若 ,則 ;

二、對數函式

(一)對數

1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

說明:1 注意底數的限制 ,且 ;

2 ;3 注意對數的書寫格式.

兩個重要對數:

1 常用對數:以10為底的對數 ;

2 自然對數:以無理數 為底的對數的對數 .

對數式與指數式的互化

對數式 指數式

對數底數 ← → 冪底數

對數 ← → 指數

真數 ← → 冪

(二)對數的運算性質

如果 ,且 , , ,那麼:

1 · + ;

2 - ;

3 .注意:換底公式

( ,且 ; ,且 ; ).

利用換底公式推導下面的結論(1) ;(2) .

(二)對數函式

1、對數函式的概念:函式 ,且 叫做對數函式,其中 是自變數,函式的定義域是(0,+∞).

注意:1 對數函式的定義與指數函式類似,都是形式定義,注意辨別。

如: , 都不是對數函式,而只能稱其為對數型函式.

2 對數函式對底數的限制: ,且 .

2、對數函式的性質:

a>10圖象特徵

函式性質

函式圖象都在y軸右側

函式的定義域為(0,+∞)

圖象關於原點和y軸不對稱

非奇非偶函式

向y軸正負方向無限延伸

函式的值域為r

函式圖象都過定點(1,0)

自左向右看,

圖象逐漸上升

自左向右看,

圖象逐漸下降

增函式減函式

第一象限的圖象縱座標都大於0

第一象限的圖象縱座標都大於0

第二象限的圖象縱座標都小於0

第二象限的圖象縱座標都小於0

(三)冪函式

1、冪函式定義:一般地,形如 的函式稱為冪函式,其中 為常數.

2、冪函式性質歸納.

(1)所有的冪函式在(0,+∞)都有定義,並且圖象都過點(1,1);

(2) 時,冪函式的圖象通過原點,並且在區間 上是增函式.特別地,當 時,冪函式的圖象下凸;當 時,冪函式的圖象上凸;

(3) 時,冪函式的圖象在區間 上是減函式.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

第三章 函式的應用

一、方程的根與函式的零點

1、函式零點的概念:對於函式 ,把使 成立的實數 叫做函式 的零點。

2、函式零點的意義:函式 的零點就是方程 實數根,亦即函式 的圖象與 軸交點的橫座標。即:

方程 有實數根 函式 的圖象與 軸有交點 函式 有零點.

3、函式零點的求法:

求函式 的零點:

1 (代數法)求方程 的實數根;

2 (幾何法)對於不能用求根公式的方程,可以將它與函式 的圖象聯絡起來,並利用函式的性質找出零點.

4、二次函式的零點:

二次函式 .

1)△>0,方程 有兩不等實根,二次函式的圖象與 軸有兩個交點,二次函式有兩個零點.

2)△=0,方程 有兩相等實根(二重根),二次函式的圖象與 軸有一個交點,二次函式有一個二重零點或二階零點.

3)△<0,方程 無實根,二次函式的圖象與 軸無交點,二次函式無零點.

3樓:向大家學習啊啊

天吶 函式!~今年是剛高中畢業 函式最重要的是掌握好它的那幾個性質 這個是最最最基本的 看書上的文字很重要 還要多看例題 另外函式要總結方法的 題做多了你也就發現其實就是那幾類 老師講的時候 你要勤於做筆記 用具體的題目再寫下詳細過程 多問問老師解題的通法 說白了就是兩點 一個是數學書上的文字很重要!另一個就是做完題後要學會琢磨答案 自己總結!!!

加油吧~~高中真的要很大耐心!~

4樓:匿名使用者

巨集觀把握,微觀掌握!

高中數學如何學好?高中數學怎樣學好

你好!我是武漢博奧教育的數學老師,很高興你的問題。首先 課本上講的定理,你可以自己試著自己去推理。這樣不但提高自己的證明能力,也加深對公式的理解。還有就是大量練習題目。基本上每課之後都要做課餘練習的題目 不包括老師的作業 聽講 應抓住聽課中的主要矛盾和問題,在聽講時儘可能與老師的講解同步思考,必要時...

如何學好高中數學

數學不能急,我剛從高中畢業,能體會到你的心情。我覺得數學要以書為本,那你就要自己提前看書,瞭解這堂課要講什麼,即使不明白也要提前預習,上課再認真聽老師講。首先,不能厭煩老師,他能教你們,必定這科比你強,你要全神貫注跟著老師的腳步,不明白的的地方多問老師或同學,不能拖,越拖問題越多。還有,數學雖然不是...

怎樣學好高中數學,如何學好高中數學?學習方法有哪些?

海風教育 怎樣學好高中數學?首先要摘要答題技巧 現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些型別?老師在上數學課 我相信數學你們應該都知道吧,不管是在什麼時候,不管是...