1樓:匿名使用者
請我給你的詳解:原碼、補碼和反碼
(1)原碼錶示法
原碼錶示法是機器數的一種簡單的表示法。其符號位用0表示正號,用:表示負號,數值一般用二進位制形式表示。設有一數為x,則原碼錶示可記作〔x〕原。
例如,x1= +1010110
x2= 一1001010
其原碼記作:
〔x1〕原=[+1010110]原=01010110
〔x2〕原=[-1001010]原=11001010
原碼錶示數的範圍與二進位制位數有關。當用8位二進位制來表示小數原碼時,其表示範圍:
最大值為0.1111111,其真值約為(0.99)10
最小值為1.1111111,其真值約為(一0.99)10
當用8位二進位制來表示整數原碼時,其表示範圍:
最大值為01111111,其真值為(127)10
最小值為11111111,其真值為(-127)10
在原碼錶示法中,對0有兩種表示形式:
〔+0〕原=00000000
[-0] 原=10000000
(2)補碼錶示法
機器數的補碼可由原碼得到。如果機器數是正數,則該機器數的補碼與原碼一樣;如果機器數是負數,則該機器數的補碼是對它的原碼(除符號位外)各位取反,並在未位加1而得到的。設有一數x,則x的補碼錶示記作〔x〕補。
例如,[x1]=+1010110
[x2]= 一1001010
[x1]原=01010110
[x1]補=01010110
即 [x1]原=[x1]補=01010110
[x2] 原= 11001010
[x2] 補=10110101+1=10110110
補碼錶示數的範圍與二進位制位數有關。當採用8位二進位制表示時,小數補碼的表示範圍:
最大為0.1111111,其真值為(0.99)10
最小為1.0000000,其真值為(一1)10
採用8位二進位制表示時,整數補碼的表示範圍:
最大為01111111,其真值為(127)10
最小為10000000,其真值為(一128)10
在補碼錶示法中,0只有一種表示形式:
[+0]補=00000000
[+0]補=11111111+1=00000000(由於受裝置字長的限制,最後的進位丟失)
所以有[+0]補=[+0]補=00000000
(3)反碼錶示法
機器數的反碼可由原碼得到。如果機器數是正數,則該機器數的反碼與原碼一樣;如果機器數是負數,則該機器數的反碼是對它的原碼(符號位除外)各位取反而得到的。設有一數x,則x的反碼錶示記作〔x〕反。
例如:x1= +1010110
x2= 一1001010
〔x1〕原=01010110
[x1]反=〔x1〕原=01010110
[x2]原=11001010
[x2]反=10110101
反碼通常作為求補過程的中間形式,即在一個負數的反碼的未位上加1,就得到了該負數的補碼。
例1. 已知[x]原=10011010,求[x]補。
分析如下:
由[x]原求[x]補的原則是:若機器數為正數,則[x]原=[x]補;若機器數為負數,則該機器數的補碼可對它的原碼(符號位除外)所有位求反,再在未位加1而得到。現給定的機器數為負數,故有[x]補=[x]原十1,即
[x]原=10011010
[x]反=11100101
十) 1
[x]補=11100110
例2. 已知[x]補=11100110,求〔x〕原。
分析如下:
對於機器數為正數,則〔x〕原=〔x〕補
對於機器數為負數,則有〔x〕原=〔〔x〕補〕補
現給定的為負數,故有:
〔x〕補=11100110
〔〔x〕補〕反=10011001
十) 1
〔〔x〕補〕補=10011010=〔x〕原
或者說:
數在計算機中是以二進位制形式表示的。
數分為有符號數和無符號數。
原碼、反碼、補碼都是有符號定點數的表示方法。
一個有符號定點數的最高位為符號位,0是正,1是副。
以下都以8位整數為例,
原碼就是這個數本身的二進位制形式。
例如0000001 就是+1
1000001 就是-1
正數的反碼和補碼都是和原碼相同。
負數的反碼是將其原碼除符號位之外的各位求反
[-3]反=[10000011]反=11111100
負數的補碼是將其原碼除符號位之外的各位求反之後在末位再加1。
[-3]補=[10000011]補=11111101
一個數和它的補碼是可逆的。
為什麼要設立補碼呢?
第一是為了能讓計算機執行減法:
[a-b]補=a補+(-b)補
第二個原因是為了統一正0和負0
正零:00000000
負零:10000000
這兩個數其實都是0,但他們的原碼卻有不同的表示。
但是他們的補碼是一樣的,都是00000000
特別注意,如果+1之後有進位的,要一直往前進位,包括符號位!(這和反碼是不同的!)
[10000000]補
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢位了,符號位變成了0)
有人會問
10000000這個補碼錶示的哪個數的補碼呢?
其實這是一個規定,這個數表示的是-128
所以n位補碼能表示的範圍是
-2^(n-1)到2^(n-1)-1
比n位原碼能表示的數多一個
又例:1011
原碼:01011
反碼:01011 //正數時,反碼=原碼
補碼:01011 //正數時,補碼=原碼
-1011
原碼:11011
反碼:10100 //負數時,反碼為原碼取反
補碼:10101 //負數時,補碼為原碼取反+1
0.1101
原碼:0.1101
反碼:0.1101 //正數時,反碼=原碼
補碼:0.1101 //正數時,補碼=原碼
-0.1101
原碼:1.1101
反碼:1.0010 //負數時,反碼為原碼取反
補碼:1.0011 //負數時,補碼為原碼取反+1
在計算機內,定點數有3種表示法:原碼、反碼和補碼
所謂原碼就是前面所介紹的二進位制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。
反碼錶示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。
補碼錶示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。
假設有一 int 型別的數,值為5,那麼,我們知道它在計算機中表示為:
00000000 00000000 00000000 00000101
5轉換成二制是101,不過int型別的數佔用4位元組(32位),所以前面填了一堆0。
現在想知道,-5在計算機中如何表示?
在計算機中,負數以其正值的補碼形式表達。
什麼叫補碼呢?這得從原碼,反碼說起。
原碼:一個整數,按照絕對值大小轉換成的二進位制數,稱為原碼。
比如 00000000 00000000 00000000 00000101 是 5的 原碼。
反碼:將二進位制數按位取反,所得的新二進位制數稱為原二進位制數的反碼。
取反操作指:原為1,得0;原為0,得1。(1變0; 0變1)
比如:將00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。
稱:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反碼。
反碼是相互的,所以也可稱:
11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互為反碼。
補碼:反碼加1稱為補碼。
也就是說,要得到一個數的補碼,先得到反碼,然後將反碼加上1,所得數稱為補碼。
比如:00000000 00000000 00000000 00000101 的反碼是:11111111 11111111 11111111 11111010。
那麼,補碼為:
11111111 11111111 11111111 11111010 1 = 11111111 11111111 11111111 11111011
所以,-5 在計算機中表達為:11111111 11111111 11111111 11111011。轉換為十六進位制:0xfffffffb。
再舉一例,我們來看整數-1在計算機中如何表示。
假設這也是一個int型別,那麼:
1、先取1的原碼:00000000 00000000 00000000 00000001
2、得反碼: 11111111 11111111 11111111 11111110
3、得補碼: 11111111 11111111 11111111 11111111
正數的原碼,補碼,反碼都相同,都等於它本身
負數的補碼是:符號位為1,其餘各位求反,末位加1
反碼是:符號位為1,其餘各位求反,但末位不加1
也就是說,反碼末位加上1就是補碼
1100110011 原
1011001100 反 除符號位,按位取反
1011001101 補 除符號位,按位取反再加1
正數的原反補是一樣的
在計算機中,資料是以補碼的形式儲存的:
在n位的機器數中,最高位為符號位,該位為零表示為正,為1表示為負;
其餘n-1位為數值位,各位的值可為0或1。
當真值為正時:原碼、反碼、補碼數值位完全相同;
當真值為負時: 原碼的數值位保持原樣,
反碼的數值位是原碼數值位的各位取反,
補碼則是反碼的最低位加一。
注意符號位不變。
如:若機器數是16位:
十進位制數 17 的原碼、反碼與補碼均為: 0000000000010001
十進位制數-17 的原碼、反碼與補碼分別為:1000000000010001、1111111111101110、1111111111101111
原碼 反碼 補碼,原碼 反碼 補碼
數值在計算機中表示形式為機器數,計算機只能識別0和1,使用的是二進位制,而在日常生活中人們使用的是十進位制,正如亞里士多德早就指出的那樣,今天十進位制的廣泛採用,只不過我們絕大多數人生來具有10個手指頭這個解剖學事實的結果.儘管在歷史上手指計數 5,10進位制 的實踐要比二或三進位制計數出現的晚.摘...
計算機中有原碼和反碼嗎?計算機原碼反碼補碼怎麼算
計算機中,並沒有原碼和反碼,只是使用補碼,代表正負數。使用補碼的意義 可以把減法或負數,轉換為加法運算。從而簡化計算機的硬體。比如鐘錶,時針轉一圈,週期是 12 小時。倒撥 3 小時,可以用正撥 9 小時代替。9,就稱為 3 的補數。計算方法 12 3 9。對於分針,倒撥 x 分,就可以用正撥 60...
原碼,反碼和補碼之間有怎樣的計算關係
原碼,反碼,補碼的基礎概念和計算方法.在探求為何機器要使用補碼之前,讓我們先了解原碼,反碼和補碼的概念.對於一個數,計算機要使用一定的編碼方式進行儲存.原碼,反碼,補碼是機器儲存一個具體數字的編碼方式.1.原碼 原碼就是符號位加上真值的絕對值,即用第一位表示符號,其餘位表示值.比如如果是8位二進位制...