1樓:匿名使用者
1、幾何尺規作圖問題
這裡所說的「幾何尺規作圖問題」是指做圖限制只能用直尺、圓規,而這裡的直尺是指沒有刻度只能畫直線的尺。「幾何尺規作圖問題」包括以下四個問題
1.化圓為方-求作一正方形使其面積等於一已知圓;
2.三等分任意角;
3.倍立方-求作一立方體使其體積是一已知立方體的二倍。
4.做正十七邊形。
以上四個問題一直困擾數學家二千多年都不得其解,而實際上這前三大問題都已證明不可能用直尺圓規經有限步驟可解決的。第四個問題是高斯用代數的方法解決的,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
2、蜂窩猜想
四世紀古希臘數學家佩波斯提出,蜂窩的優美形狀,是自然界最有效勞動的代表。他猜想,人們所見到的、截面呈六邊形的蜂窩,是蜜蜂採用最少量的蜂蠟建造成的。他的這一猜想稱為蜂窩猜想,但這一猜想一直沒有人能證明。
2023年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。2023年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。但如果多邊形的邊是曲線時,會發生什麼情況呢?
陶斯認為,正六邊形與其他任何形狀的圖形相比,它的周長最小,但他不能證明這一點。而黑爾在考慮了周邊是曲線時,無論是曲線向外突,還是向內凹,都證明了由許多正六邊形組成的圖形周長最校他已將19頁的證明過程放在因特網上,許多專家都已看到了這一證明,認為黑爾的證明是正確的。
3、孿生素數猜想
2023年,波林那克提出孿生素生猜想(the conjecture of twin primes),即猜測存在無窮多對孿生素數。孿生素數即相差2的一對素數。例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孿生素數。
2023年,中國數學家陳景潤在這方面得到最好的結果:存在無窮多個素數p,使p+2是不超過兩個素數之積。孿生素數猜想至今仍未解決,但一般人都認為是正確的。
4、費馬最後定理
在三百六十多年前的某一天,費馬突然心血來潮在書頁的空白處,寫下一個看起來很簡單的定理這個定理的內容是有關一個方程式 xn +yn = zn
的正整數解的問題,當n=2時就是我們所熟知的畢氏定理(中國古代又稱勾股弦定理)。
費馬聲稱當n>2時,就找不到滿足
xn +yn = zn
的整數解,例如:方程式
x3 +y3 = z3
就無法找到整數解。
始作俑者的費馬也因此留下了千古的難題,三百多年來無數的數學家嘗試要去解決這個難題卻都徒勞無功。這個號稱世紀難題的費馬最後定理也就成了數學界的心頭大患,極欲解之而後快。
不過這個三百多年的數學懸案終於解決了,這個數學難題是由英國的數學家威利斯(andrew wiles)所解決。其實威利斯是利用二十世紀過去三十年來抽象數學發展的結果加以證明。
5、四色猜想
2023年,畢業於倫敦大學的弗南西斯.格思裡來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。」
2023年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。
2023年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩臺不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。四色猜想的計算機證明,轟動了世界。
6、哥德**猜想
公元2023年6月7日哥德**(goldbach)寫信給當時的大數學家尤拉(euler),提出了以下的猜想:
(a) 任何一個》=6之偶數,都可以表示成兩個奇質數之和。
(b) 任何一個》=9之奇數,都可以表示成三個奇質數之和。
從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德**猜想由此成為數學皇冠上一顆可望不可及的「明珠」。
2樓:匿名使用者
數學十大猜想難題」之一:p(多項式演算法)問題對np(非多項式演算法)問題 難題」之二:霍奇猜想 難題」之三:
龐加萊猜想 難題」之四:黎曼假設 難題」之五:楊-米爾斯存在性和質量缺口 難題」之六:
納維葉-斯托克斯方程的存在性與光滑性 難題」之七:貝赫和斯維訥通-戴爾猜想 難題」之八:幾何尺規作圖問題 難題」之九:
哥德**猜想 難題」之十:四色猜想
當今世界十大數學猜想是什麼?
3樓:潯子
1、幾何尺規作圖問題 這裡所說的「幾何尺規作圖問題」是指做圖限制只能用直尺、圓規,而這裡的直尺是指沒有刻度只能畫直線的尺。「幾何尺規作圖問題」包括以下四個問題 1.化圓為方-求作一正方形使其面積等於一已知圓; 2.
三等分任意角; 3.倍立方-求作一立方體使其體積是一已知立方體的二倍。 4.
做正十七邊形。 以上四個問題一直困擾數學家二千多年都不得其解,而實際上這前三大問題都已證明不可能用直尺圓規經有限步驟可解決的。第四個問題是高斯用代數的方法解決的,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
2、蜂窩猜想 四世紀古希臘數學家佩波斯提出,蜂窩的優美形狀,是自然界最有效勞動的代表。他猜想,人們所見到的、截面呈六邊形的蜂窩,是蜜蜂採用最少量的蜂蠟建造成的。他的這一猜想稱為蜂窩猜想,但這一猜想一直沒有人能證明。
2023年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。2023年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。但如果多邊形的邊是曲線時,會發生什麼情況呢?
陶斯認為,正六邊形與其他任何形狀的圖形相比,它的周長最小,但他不能證明這一點。而黑爾在考慮了周邊是曲線時,無論是曲線向外突,還是向內凹,都證明了由許多正六邊形組成的圖形周長最校他已將19頁的證明過程放在因特網上,許多專家都已看到了這一證明,認為黑爾的證明是正確的。 3、孿生素數猜想 2023年,波林那克提出孿生素生猜想(the conjecture of twin primes),即猜測存在無窮多對孿生素數。
孿生素數即相差2的一對素數。例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孿生素數。2023年,中國數學家陳景潤在這方面得到最好的結果:
存在無窮多個素數p,使p+2是不超過兩個素數之積。孿生素數猜想至今仍未解決,但一般人都認為是正確的。 4、費馬最後定理 在三百六十多年前的某一天,費馬突然心血來潮在書頁的空白處,寫下一個看起來很簡單的定理這個定理的內容是有關一個方程式 xn +yn = zn 的正整數解的問題,當n=2時就是我們所熟知的畢氏定理(中國古代又稱勾股弦定理)。
費馬聲稱當n>2時,就找不到滿足 xn +yn = zn 的整數解,例如:方程式 x3 +y3 = z3 就無法找到整數解。 始作俑者的費馬也因此留下了千古的難題,三百多年來無數的數學家嘗試要去解決這個難題卻都徒勞無功。
這個號稱世紀難題的費馬最後定理也就成了數學界的心頭大患,極欲解之而後快。 不過這個三百多年的數學懸案終於解決了,這個數學難題是由英國的數學家威利斯(andrew wiles)所解決。其實威利斯是利用二十世紀過去三十年來抽象數學發展的結果加以證明。
5、四色猜想 2023年,畢業於倫敦大學的弗南西斯.格思裡來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。
」 2023年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。 2023年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩臺不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。
四色猜想的計算機證明,轟動了世界。 6、哥德**猜想 公元2023年6月7日哥德**(goldbach)寫信給當時的大數學家尤拉(euler),提出了以下的猜想: (a) 任何一個》=6之偶數,都可以表示成兩個奇質數之和。
(b) 任何一個》=9之奇數,都可以表示成三個奇質數之和。 從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。
哥德**猜想由此成為數學皇冠上一顆可望不可及的「明珠」。
當今世界十大數學猜想是什麼?拜託各位了 3q
4樓:zk系列
1、幾何尺規作圖問題 這裡所說的「幾何尺規作圖問題」是指做圖限制只能用直尺、圓規,而這裡的直尺是指沒有刻度只能畫直線的尺。「幾何尺規作圖問題」包括以下四個問題 1.化圓為方-求作一正方形使其面積等於一已知圓; 2.
三等分任意角; 3.倍立方-求作一立方體使其體積是一已知立方體的二倍。 4.
做正十七邊形。 以上四個問題一直困擾數學家二千多年都不得其解,而實際上這前三大問題都已證明不可能用直尺圓規經有限步驟可解決的。第四個問題是高斯用代數的方法解決的,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
2、蜂窩猜想 四世紀古希臘數學家佩波斯提出,蜂窩的優美形狀,是自然界最有效勞動的代表。他猜想,人們所見到的、截面呈六邊形的蜂窩,是蜜蜂採用最少量的蜂蠟建造成的。他的這一猜想稱為蜂窩猜想,但這一猜想一直沒有人能證明。
2023年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。2023年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。但如果多邊形的邊是曲線時,會發生什麼情況呢?
陶斯認為,正六邊形與其他任何形狀的圖形相比,它的周長最小,但他不能證明這一點。而黑爾在考慮了周邊是曲線時,無論是曲線向外突,還是向內凹,都證明了由許多正六邊形組成的圖形周長最校他已將19頁的證明過程放在因特網上,許多專家都已看到了這一證明,認為黑爾的證明是正確的。 3、孿生素數猜想 2023年,波林那克提出孿生素生猜想(the conjecture of twin primes),即猜測存在無窮多對孿生素數。
孿生素數即相差2的一對素數。例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孿生素數。2023年,中國數學家陳景潤在這方面得到最好的結果:
存在無窮多個素數p,使p+2是不超過兩個素數之積。孿生素數猜想至今仍未解決,但一般人都認為是正確的。 4、費馬最後定理 在三百六十多年前的某一天,費馬突然心血來潮在書頁的空白處,寫下一個看起來很簡單的定理這個定理的內容是有關一個方程式 xn +yn = zn 的正整數解的問題,當n=2時就是我們所熟知的畢氏定理(中國古代又稱勾股弦定理)。
費馬聲稱當n>2時,就找不到滿足 xn +yn = zn 的整數解,例如:方程式 x3 +y3 = z3 就無法找到整數解。 始作俑者的費馬也因此留下了千古的難題,三百多年來無數的數學家嘗試要去解決這個難題卻都徒勞無功。
這個號稱世紀難題的費馬最後定理也就成了數學界的心頭大患,極欲解之而後快。 不過這個三百多年的數學懸案終於解決了,這個數學難題是由英國的數學家威利斯(andrew wiles)所解決。其實威利斯是利用二十世紀過去三十年來抽象數學發展的結果加以證明。
5、四色猜想 2023年,畢業於倫敦大學的弗南西斯.格思裡來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。
」 2023年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。 2023年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩臺不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。
四色猜想的計算機證明,轟動了世界。 6、哥德**猜想 公元2023年6月7日哥德**(goldbach)寫信給當時的大數學家尤拉(euler),提出了以下的猜想: (a) 任何一個》=6之偶數,都可以表示成兩個奇質數之和。
(b) 任何一個》=9之奇數,都可以表示成三個奇質數之和。 從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。
哥德**猜想由此成為數學皇冠上一顆可望不可及的「明珠」。
當今世界發展的三大趨勢是什麼,當今世界的發展趨勢是什麼
巴瀚海城鵾 一 和平和發展是當今時代的主題 二 世界要和平 人民要和諧 國家要發展 社會要進步,是不可阻擋的時代潮流 三 經濟全球化 區域經濟一體化和金融經濟國際化是當今世界經濟發展的主要趨勢 這三大趨勢之間既有聯絡又有區別,在發展中相互促進,又相互制約,共同形成對世界經濟 政治及國際關係的巨大影響...
當今世界盛行的三大哲學,當今世界盛行的三大哲學是什麼?
冬裡紅塵莫土 西方哲學 中國哲學與印度哲學並稱為世界三大哲學傳統。西方哲學 以希臘哲學為代表,以自然為出發點,以實驗為核心方法。表現的目的為人與自然的關係。與科學的關係較近。西方哲學的主要特點是提倡以 科學資料 為理論的依據,也就是說理論要靠資料的 實證 才能得到認可。不管理論是否實用,只要是被證明...
當今世界最強大的發達國家是什麼,當今世界最強大的十個發達國家是什麼
血色黃昏的黃昏 發達國家與發展中國家的明顯趨區別在於經濟方面,當然確定一個國家是否是發達國家除了經濟還要看科學 醫療 教育等等方面,而衡量一個國家的發展的指數稱為人類發展指數簡稱hdi,它是由聯合國開發計劃署給出的一種方法。那麼今天就為大家介紹一下世界上十大最發達國家,看看它們的指數。i,挪威 2,...