1樓:匿名使用者
求定積分【0,1】∫t√(1+t²+t⁴)dt
解:原式=【0,1】(1/2)∫√(1+t²+t⁴)d(t²)=【0,1】(1/2)∫√[(t²+1/2)²+3/4]d[t²+(1/2)]
【令t²+1/2=u;則當t=0時u=1/2;t=1時u=3/2;代入得】
=【1/2,3/2】(1/2)∫√(u²+3/4)du=(1/2)【1/2,3/2】
=【1/2,3/2】
=-=(1/8)[3(√3)-1]+(3/16)ln[(3+2√3)/3]
【其中用了積分公式:∫√(u²+a²)du=(u/2)√(u²+a²)+(a²/2)ln[u+√(u²+a²)]】
2樓:
t^2=u
∫(0,1) t√(1+t^2+t^4)dt=(1/2)∫(0,1) √(1+u+u^2)du=(1/2)∫(0,1) √(u+1/2)^2+3/4)du (用積分表√(u^2+a^2)du
=(1/2)|(0,1)
代入上下限即可
求∫t^2/(1+t^4) dt
3樓:丘冷萱
哈哈,今天第三次做這個題了。你將下面的x換成t就行了。
∫ x²/(1+x^4) dx
=(1/2)∫ (x²-1+x²+1)/(1+x^4) dx
=(1/2)∫ (x²-1)/(1+x^4) dx + (1/2)∫ (x²+1)/(1+x^4) dx
分子分同除以x²
=(1/2)∫ (1-1/x²)/(1/x²+x²) dx + (1/2)∫ (1+1/x²)/(1/x²+x²) dx
分子放到微分之後
=(1/2)∫ 1/(1/x²+x²) d(x+1/x) + (1/2)∫ 1/(1/x²+x²) d(x-1/x)
=(1/2)∫ 1/(1/x²+x²+2-2) d(x+1/x) + (1/2)∫ 1/(1/x²+x²-2+2) d(x-1/x)
=(1/2)∫ 1/[(x+1/x)²-2] d(x+1/x) + (1/2)∫ 1/[(x-1/x)²+2] d(x-1/x)
=(√2/8)ln|(x+1/x-√2)/(x+1/x+√2)| + (√2/4)arctan[(x-1/x)/√2] + c
=(√2/8)ln|(x²+1-√2x)/(x²+1+√2x)| + (√2/4)arctan[(x-1/x)/√2] + c
【數學之美】團隊為您解答,若有不懂請追問,如果解決問題請點下面的「選為滿意答案」。
求∫√(1+t^2)dt的定積分
4樓:小小芝麻大大夢
∫√(1+t^2) dt= t√(1+t^2) /2 + 1/2ln+ c。c為積分常數。
解答過程如下:
令t=tan[x]
∫√(1+t^2) dt
= ∫sec[x]d(tan[x])
= sec[x]tan[x] - ∫tan[x]d(sec[x])
= sec[x]tan[x] - ∫tan[x](tan[x]sec[x])dx
= sec[x]tan[x] - ∫(sec[x]sec[x]-1)sec[x]dx
= sec[x]tan[x] - ∫sec[x]d(tan[x])dx + ∫sec[x]dx
所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2∫sec[x]dx
其中∫sec[x]dx = ∫sec[x]/ dx
= ∫d/
= ln
所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2ln + c
代回得:
∫√(1+t^2) dt
= t√(1+t^2) /2 + 1/2ln+ c
擴充套件資料:
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
求不定積分的方法:
第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)。
分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)。
5樓:玲玲幽魂
令t=tan[x],
∫√(1+t^2) dt
= ∫sec[x]d(tan[x])
= sec[x]tan[x] - ∫tan[x]d(sec[x])
= sec[x]tan[x] - ∫tan[x](tan[x]sec[x])dx
= sec[x]tan[x] - ∫(sec[x]sec[x]-1)sec[x]dx
= sec[x]tan[x] - ∫sec[x]d(tan[x])dx + ∫sec[x]dx
所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2∫sec[x]dx
其中∫sec[x]dx = ∫sec[x]/ dx
= ∫d/
= ln
所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2ln + c
代回得,
∫√(1+t^2) dt
= t√(1+t^2) /2 + 1/2ln+ c
求1 t 2)dt的定積分,求sin根號 1 t 2 dt的不定積分
小小芝麻大大夢 1 t 2 dt t 1 t 2 2 1 2ln c。c為積分常數。解答過程如下 令t tan x 1 t 2 dt sec x d tan x sec x tan x tan x d sec x sec x tan x tan x tan x sec x dx sec x tan ...
WOW中T1 T2 T3 T4 T5 T6什麼意思都
t裝指第n套地下城裝備,用於pvp打副本用目前版本適合70級的是t4 t5 t6裝,通過在副本中得到類似戰敗英雄的頭顱一類的東西換取 t4裝在卡拉贊,格魯爾的巢穴,瑪瑟裡頓的巢穴三個副本里有掉落t5裝在風暴要塞和毒蛇神殿兩個副本里掉落 t6裝在海加爾山 黑暗神殿和太陽之井高地3個副本掉落剛到70可以...
魔獸世界裡的,T0 T1 T2 T3 T4 T5 和QS。DPS 是什麼意思
厙溫夔凰 t0到t5指的是套裝。是60級和70級那段時間或之前的時候,現在過時了,收集的話也是為了4.3的時候能讓裝備變形所以收集。qs指的是聖騎士這個職業。dps是每秒輸出傷害,引申的意思是輸出職業。 闕亭晚關甲 關於t裝的解釋ls已經很清楚了 不多說t就是套裝的意思 1 6就是各個團隊fb掉落的...