1樓:說恏de倖湢迡
全國「希望杯」數學競賽初一選拔試題
班級 姓名 學號 得分
一、選擇題(每小題5分,共50分)
1.數0是( )
(a) 最小整數 (b)最小正數 (c)最小自然數 (d)最小有理數
2.下面說法中不正確的是( )
(a)有最小的自然數 (b)沒有最小的正有理數
(c)沒有最大的負整數 (d)沒有最小的負數
3.計算 的值是( )
(a) (b) (c) 1 (d)-1
4.下列四個分數中,大於 且小於 的是( )
(a) (b) (c) (d)
5.若 ,則( )
(a)a>b>c (b)c>b>a (c)b>c>a (d)c>a>b
6.在-0.1428中用數字3替換其中的一個非0數碼後,使所得的數最大,則被替
換的數字是( )
(a)1 (b)2 (c)4 (d)8
7.圖中陰影部分的面積是( )
(a)11 (b)15 (c)16 (d)18
8.以下計算結果中,最大的一個數是( )
(a) (b)
(c) (d)
9.點a、b、c、d在數軸上的位置如圖: 則代表數最大
的點是( )
(a)a (b)b (c)c (d)d
10.用1、2、3、4、5、6、7、8 這八個數字組成兩個四位數,要使這兩個四位數的
乘積值最大,則這兩個四位數中,較大的一個是( )
(a)8531 (b)8765 (c)8624 (d)8672
二、填空題(每小題5分,共50分)
11.計算
.12.計算: .
13.一個數的相反數是1999,這個數是 .
14. 11+12+13+14+15+……+1998+1999 = .
15. 一個質數是兩位數,它的個位數字與十位數字的差是7,則這個質數是 .
16.已知x = 1992×1993×1994×1995,則x的末位數字是 .
17.兩個同樣大小的立方體積木如圖放置,已知每個
立方體相對面上寫的數之和都等於-1,那麼看不
見的七個面上的數的和等於 .
18. 一個四位數能被9整除,去掉末位數字後所得的三位數恰是2的倍數,則這樣
的四位數中最大的那個的末位數字是 .
19. 將2000名學生排成一列,按1、2、3、4、5、6、7、6、5、4、3、2、1、2、3、
4、5、6、7、6、5、4、3、2、……迴圈報數,那麼,第2000名學生所報的數是 .
20. 一個布袋中裝有紅、黃、藍三種顏色的大小相同的木球,紅球上標有數字1,黃球上表有數字2,藍球上標有數字3,小明從布袋中摸出10個球,它們上面 所標
的數字之和等於21,則小明摸出的球中紅球的個數最多不超過 個.
2樓:匿名使用者
傭12章長為一釐米的小正方形紙片拼成一個長方形或這個正方形怎樣拼周長最短
3樓:死神
23x+57y=10304x x+y=10 x=? y=?
給我出幾道數學題
4樓:
公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上的所有點都在這個平面內。 (1)判定直線在平面內的依據
(2)判定點在平面內的方法
公理2:如果兩個平面有一個公共點,那它還有其它公共點,這些公共點的集合是一條直線 。 (1)判定兩個平面相交的依據
(2)判定若干個點在兩個相交平面的交線上
公理3:經過不在一條直線上的三點,有且只有一個平面。 (1)確定一個平面的依據
(2)判定若干個點共面的依據
推論1:經過一條直線和這條直線外一點,有且僅有一個平面。 (1)判定若干條直線共面的依據
(2)判斷若干個平面重合的依據
(3)判斷幾何圖形是平面圖形的依據
推論2:經過兩條相交直線,有且僅有一個平面。
推論3:經過兩條平行線,有且僅有一個平面。
立體幾何 直線與平面
空 間 二 直 線 平行直線 公理4:平行於同一直線的兩條直線互相平行
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,並且方向相同,那麼這兩個角相等。
異面直線
空 間 直 線 和 平 面 位 置 關 系
(1)直線在平面內——有無數個公共點
(2)直線和平面相交——有且只有一個公共點
(3)直線和平面平行——沒有公共點
直 線 和 平 面 平 行
判定定理
性質定理
直 線 與 平 面 垂 直
判 定 定 理
性 質 定 理
立體幾何 直線與平面
直線與平面所成的角 (1)平面的斜線和它在平面上的射影所成的銳角,叫做這條斜線與平面所成的角
(2)一條直線垂直於平面,定義這直線與平面所成的角是直角
(3)一條直線和平面平行,或在平面內,定義它和平面所成的角是00的角
三垂線定理 在平面內的一條直線,如果和這個平面的一條斜線的射影垂直,那麼它和這條斜線垂直
三垂線逆定理 在平面內的一條直線,如果和這個平面的一條斜線垂直,那麼它和這條斜線的射影垂直
空間兩個平面 兩個平面平行 判定
性質 (1)如果一個平面內有兩條相交直線平行於另一個平面,那麼這兩個平面平行
(2)垂直於同一直線的兩個平面平行
(1)兩個平面平行,其中一個平面內的直線必平行於另一個平面
(2)如果兩個平行平面同時和第三個平面相交,那麼它們的交線平行
(3)一條直線垂直於兩個平行平面中的一個平面,它也垂直於另一個平面
相交的兩平面 二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫二面角的線,這兩個半平面叫二面角的面
二面角的平面角:以二面角的稜上任一點為端點,在兩個面內分另作垂直稜的兩條射線,這兩條射線所成的角叫二面角的平面角
平面角是直角的二面角叫做直二面角
兩平面垂直 判定
性質 如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直 (1)若二平面垂直,那麼在一個平面內垂直於它們的交線的直線垂直於另一個平面
(2)如果兩個平面垂直,那麼經過第一個平面內一點垂直於第二個平面的直線,在第一個平面內
你的qq多少?
5樓:學生與學習
1.若 ,則( )
a. b. c. d.
2.直線a、b、c兩兩平行,但不共面,經過其中2條直線的平面共有( )個
a.1 b.3 c.0 d.6
3. 過不共面的4點中的3個點的平面共有( )個
a.0 b.3 c.4 d.無數個
4.設有如下三個命題:甲:相交兩直線l、m都在平面 內,並且都不在平面 內;乙:l、m之中至少有一條與 相交;丙: 與 相交。那麼甲成立時,下列正確的是( )
a.乙是丙的充分不必要條件 b.乙是丙的必要而不充分條件
c.乙是丙的充要條件 d.乙既不是丙的充分條件也不是丙的必要條件
5.直線a、b、c交於一點,經過這3條直線的平面有( )個
a.0 b.1 c.無數 d.可以有0個,也可以有1個
6. 空間四點中,三點共線是四點共面的( )條件
a.充分而不必要 b.必要不充分 c.充要 d.既不充分也不必要
7.判斷下列命題的真假,真的打「√」,假的打「×」
(1)空間三點可以確定一個平面 ( )
(2)兩條直線可以確定一個平面 ( )
(3)兩條相交直線可以確定一個平面 ( )
(4)一條直線和一個點可以確定一個平面 ( )
(5)三條平行直線可以確定三個平面 ( )
(6)兩兩相交的三條直線確定一個平面 ( )
(7)兩個平面若有不同的三個公共點,則兩個平面重合 ( )
(8)若四點不共面,那麼每三個點一定不共線 ( )
請幫我出幾道數學題(注意:是出題!!!)
6樓:心境之神
1、22+(-4)
+(-2)+4*3
2、-3又5分之3-(-4又4分之3)-(1又5分之2)+(-3又4分之3)
3、5+21*8/2-6-59
4、22+54-8*25/10
5、-2/9-7/9-56
1、5a--[9a-(7b+c)]
不好意思 不想抄了 怪冷的
到我給你的地址裡裡去找吧
實在是不好意思啊
7樓:溜冰寶寶
對不起我沒時間你自己去下面的**找一下吧!
給我出幾道數學題,給我出10道數學題,謝謝!
公理1 如果一條直線上的兩點在一個平面內,那麼這條直線上的所有點都在這個平面內。1 判定直線在平面內的依據 2 判定點在平面內的方法 公理2 如果兩個平面有一個公共點,那它還有其它公共點,這些公共點的集合是一條直線 1 判定兩個平面相交的依據 2 判定若干個點在兩個相交平面的交線上 公理3 經過不在...
幾道數學題,幾道數學題
斐友 1.甲爬了15層,乙爬了10層,乙在2.生產螺栓的工人應有x人,螺母86 x人2 12x 19 86 x 得x 38 3設一共x 第一天賣了x 2 12,剩下x 2 12 第二天賣了 1 3 x 2 12 12 x 6 8,剩下 x 2 12 x 6 8 x 3 20 第三天賣了 1 4 x ...
幾道數學題,幾道數學題
無理數有0.1020020002 1 整數有7 13 非負數有3.1416,343的立方根,0.1020020002.0.103003,169的算術平方根,0.326 26迴圈 1 1 1 2 的算術平方根,得數是13 第二題是錯題,因為第一個式子為x 2 3,不可能解集裡無大於號第三題從第二個式子...