1樓:雙子努力奮鬥
一、知識要點: 一元二次方程和一元一次方程都是整式方程,它是初中數學的一個重點內容,也是今後學習數學的基礎,應引起同學們的重視。 一元二次方程的一般形式為:
ax2+bx+c=0, (a≠0),它是隻含一個未知數,並且未知數的最高次數是2的整式方程。 解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。一元二次方程有四種解 法:
1、直接開平方法;2、配方法;3、公式法;4、因式分解法。 二、方法、例題精講: 1、直接開平方法:
直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)2=n (n≥0)的方程,其解為x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:
(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以此方程也可用直接開平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丟解) ∴x= ∴原方程的解為x1=,x2= (2)解:
9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解為x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先將常數c移到方程右邊:ax2+bx=-c 將二次項係數化為1:
x2+x=- 方程兩邊分別加上一次項係數的一半的平方:x2+x+( )2=- +( )2 方程左邊成為一個完全平方式:(x+ )2= 當b2-4ac≥0時,x+ =± ∴x=(這就是求根公式) 例2.用配方法解方程 3x2-4x-2=0 解:
將常數項移到方程右邊 3x2-4x=2 將二次項係數化為1:x2-x= 方程兩邊都加上一次項係數一半的平方:x2-x+( )2= +( )2 配方:
(x-)2= 直接開平方得:x-=± ∴x= ∴原方程的解為x1=,x2= . 3.公式法:
把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項係數a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x2-8x=-5 解:將方程化為一般形式:
2x2-8x+5=0 ∴a=2, b=-8, c=5 b2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解為x1=,x2= . 4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓 兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個 根。
這種解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學) (1)解:
(x+3)(x-6)=-8 化簡整理得 x2-3x-10=0 (方程左邊為二次三項式,右邊為零) (x-5)(x+2)=0 (方程左邊分解因式) ∴x-5=0或x+2=0 (轉化成兩個一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法將方程左邊分解因式) ∴x=0或2x+3=0 (轉化成兩個一元一次方程) ∴x1=0,x2=-是原方程的解。
注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。 (3)解:
6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 2 ,∴此題可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。
小結: 一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般 形式,同時應使二次項係數化為正數。 直接開平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式 法時,一定要把原方程化成一般形式,以便確定係數,而且在用公式前應先計算判別式的值,以便判斷方程 是否有解。 配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。
但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方 法之一,一定要掌握好。(三種重要的數學方法:換元法,配方法,待定係數法)。
例5.用適當的方法解下列方程。(選學) (1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0 (3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0 分析:(1)首先應觀察題目有無特點,不要盲目地先做乘法運算。
觀察後發現,方程左邊可用平方差 公式分解因式,化成兩個一次因式的乘積。 (2)可用十字相乘法將方程左邊因式分解。 (3)化成一般形式後利用公式法解。
(4)把方程變形為 4x2-2(2m+5)x+(m+2)(m+3)=0,然後可利用十字相乘法因式分解。 (1)解:4(x+2)2-9(x-3)2=0 [2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0 (5x-5)(-x+13)=0 5x-5=0或-x+13=0 ∴x1=1,x2=13 (2)解:
x2+(2- )x+ -3=0 [x-(-3)](x-1)=0 x-(-3)=0或x-1=0 ∴x1=-3,x2=1 (3)解:x2-2 x=- x2-2 x+ =0 (先化成一般形式) △=(-2 )2-4 ×=12-8=4>0 ∴x= ∴x1=,x2= (4)解:4x2-4mx-10x+m2+5m+6=0 4x2-2(2m+5)x+(m+2)(m+3)=0 [2x-(m+2)][2x-(m+3)]=0 2x-(m+2)=0或2x-(m+3)=0 ∴x1= ,x2= 例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。
(選學) 分析:此方程如果先做乘方,乘法,合併同類項化成一般形式後再做將會比較繁瑣,仔細觀察題目,我 們發現如果把x+1和x-4分別看作一個整體,則方程左邊可用十字相乘法分解因式(實際上是運用換元的方 法) 解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0 即 (5x-5)(2x-3)=0 ∴5(x-1)(2x-3)=0 (x-1)(2x-3)=0 ∴x-1=0或2x-3=0 ∴x1=1,x2=是原方程的解。
例7.用配方法解關於x的一元二次方程x2+px+q=0 解:x2+px+q=0可變形為 x2+px=-q (常數項移到方程右邊) x2+px+( )2=-q+()2 (方程兩邊都加上一次項係數一半的平方) (x+)2= (配方) 當p2-4q≥0時,≥0(必須對p2-4q進行分類討論) ∴x=- ±= ∴x1= ,x2= 當p2-4q<0時,<0此時原方程無實根。 說明:
本題是含有字母系數的方程,題目中對p, q沒有附加條件,因此在解題過程中應隨時注意對字母 取值的要求,必要時進行分類討論。 練習: (一)用適當的方法解下列方程:
1. 6x2-x-2=0 2. (x+5)(x-5)=3 3.
x2-x=0 4. x2-4x+4=0 5. 3x2+1=2x 6.
(2x+3)2+5(2x+3)-6=0 (二)解下列關於x的方程 1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0 練習參***:
(一)1.x1=- ,x2= 2.x1=2,x2=-2 3.
x1=0,x2= 4.x1=x2=2 5.x1=x2= 6.
解:(把2x+3看作一個整體,將方程左邊分解因式) [(2x+3)+6][(2x+3)-1]=0 即 (2x+9)(2x+2)=0 ∴2x+9=0或2x+2=0 ∴x1=-,x2=-1是原方程的解。 (二)1.解:
x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a a=0 [x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0 ∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0 ∴x1= +b,x2= -b是 ∴x1= a,x2=a是 原方程的解。 原方程的解。
測試 選擇題 1.方程x(x-5)=5(x-5)的根是( ) a、x=5 b、x=-5 c、x1=x2=5 d、x1=x2=-5 2.多項式a2+4a-10的值等於11,則a的值為( )。 a、3或7 b、-3或7 c、3或-7 d、-3或-7 3.若一元二次方程ax2+bx+c=0中的二次項係數,一次項係數和常數項之和等於零,那麼方程必有一個 根是( )。 a、0 b、1 c、-1 d、±1 4. 一元二次方程ax2+bx+c=0有一個根是零的條件為( )。
a、b≠0且c=0 b、b=0且c≠0 c、b=0且c=0 d、c=0 5. 方程x2-3x=10的兩個根是( )。 a、-2,5 b、2,-5 c、2,5 d、-2,-5 6. 方程x2-3x+3=0的解是( )。 a、 b、 c、 d、無實根 7. 方程2x2-0.
15=0的解是( )。 a、x= b、x=- c、x1=0.27, x2=-0.
27 d、x1=, x2=- 8. 方程x2-x-4=0左邊配成一個完全平方式後,所得的方程是( )。 a、(x-)2= b、(x- )2=- c、(x- )2= d、以上答案都不對 9. 已知一元二次方程x2-2x-m=0,用配方法解該方程配方後的方程是( )。 a、(x-1)2=m2+1 b、(x-1)2=m-1 c、(x-1)2=1-m d、(x-1)2=m+1 答案與解析 答案:
1.c 2.c 3.
b 4.d 5.a 6.
d 7.d 8.c 9.
d 解析: 1.分析:移項得:
(x-5)2=0,則x1=x2=5, 注意:方程兩邊不要輕易除以一個整式,另外一元二次方程有實數根,一定是兩個。 2.分析:
依題意得:a2+4a-10=11, 解得 a=3或a=-7. 3.分析:
依題意:有a+b+c=0, 方程左側為a+b+c, 且具僅有x=1時, ax2+bx+c=a+b+c,意味著當x=1 時,方程成立,則必有根為x=1。 4.分析:
一元二次方程 ax2+bx+c=0若有一個根為零, 則ax2+bx+c必存在因式x,則有且僅有c=0時,存在公因式x,所以 c=0. 另外,還可以將x=0代入,得c=0,更簡單! 5.分析:
原方程變為 x2-3x-10=0, 則(x-5)(x+2)=0 x-5=0 或x+2=0 x1=5, x2=-2. 6.分析:δ=9-4×3=-3=0的時候,方程的解為x=正負根號c 2、十字相乘法 將原方程因式分解得到a(x-x1)(x-x2)=0,此時方程的兩個解就是x1,x2 3、公式法 當你沒辦法的時候,直接把方程各個係數帶入如下公式 x=[-b加減根號(b^2-4ac)]/2a 可以算出通解 以上^2表示平方這個很全,所以全給你了
我數學不好,怎麼辦小學時我的數學在班裡都是數一數二的
啦啦小冉 同學。不是我打擊你。如果你總是陷在小學數學數一數二的情緒中,你是學不好數學的。而且學好數學不一定要多做數學題,數學題是要做,但只要適量就好。關鍵在於你所做的題目你真正弄懂了沒有!如果沒有弄懂,就算做再多的題目也是白做!我估計你現在的問題是基礎不紮實,建議你認認真真地研究下數學書,把書上的例...
我是文科,數學英語不好可以復讀嗎
兩岸猿聲啼不住,輕舟已過萬重山。 這位同學,你讓父母跟學校的校長或者班主任談談,然後辦理一下相關的手續就可以復讀了。有些人輕鬆的考取高分,有些人很努力的學習,復讀多次,就是考不上大學,因為腦子不給力。作為一名考上浙江大學的復讀生可以給你一點經驗。我認為復讀的好處就是你畢竟經歷過一次高考了,比別人多了...
高考的時候文科和理科用的語文數學試卷是一樣的嗎
高考的時候文科和理科用的語文試卷除江蘇省外是一樣的,數學試卷是不一樣的,數學試卷分為文科數學與理科數學,江蘇省語文文科加考40分加試題 數學理科加考40分加試題。具體情況如下 全國大部分省市區採用 3 x 的高考模式,3 指 語文 數學 外語 x 指由學生根據自己的意願,自主從文科綜合 簡稱文綜,分...