1樓:匿名使用者
畫個圖就知道了
可以把全集分成4個子集:
s1 = a交b,
s2 = a-b = a-a交b,s3 = b-a = b-a交b,s4 = (a∪b)的補
a的補=s3∪s4
b的補=s2∪s4
所以a的補集並b的補集=s2∪s3∪s4
所以(a的補集並b的補集)的補集=s1=a∩b
2樓:
證明如下:(a∪b)'=a'∩b';(a∩b)'=a'∪b'
可以把全集分成4個子集:
s1 = a∩b,
s2 = a-b = a-a∩b,
s3 = b-a = b-a∩b,
s4 = (a∪b)的補集,
補集一般指絕對補集,即一般地,設s是一個集合,a是s的一個子集,由s中所有不屬於a的元素組成的集合,叫做子集a在s中的絕對補集。
a的補集=s3∪s4,
b的補集=s2∪s4。
所以a的補集並b的補集=s2∪s3∪s4
所以(a的補集並b的補集)的補集=s1=a∩b。
擴充套件資料
運算定律
1、交換律:a∩b=b∩a;a∪b=b∪a
2、結合律:a∪(b∪c)=(a∪b)∪c;a∩(b∩c)=(a∩b)∩c
3、分配對偶律:a∩(b∪c)=(a∩b)∪(a∩c);a∪(b∩c)=(a∪b)∩(a∪c)
4、對偶律:(a∪b)^c=a^c∩b^c;(a∩b)^c=a^c∪b^c
5、同一律:a∪∅=a;a∩u=a
6、求補律:a∪a'=u;a∩a'=∅
為什麼a並b的補集等於a的補集交b的補集
3樓:喵喵喵
證明如du下:(a∪b)'=a'∩
zhib';(a∩b)'=a'∪b'
可以把全集分成4個子集:dao
s1 = a∩b,
s2 = a-b = a-a∩b,
s3 = b-a = b-a∩b,
s4 = (a∪b)的補集,
補集一內般指絕容對補集,即一般地,設s是一個集合,a是s的一個子集,由s中所有不屬於a的元素組成的集合,叫做子集a在s中的絕對補集。
a的補集=s3∪s4,
b的補集=s2∪s4。
所以a的補集並b的補集=s2∪s3∪s4
所以(a的補集並b的補集)的補集=s1=a∩b。
擴充套件資料
運算定律
1、交換律:a∩b=b∩a;a∪b=b∪a
2、結合律:a∪(b∪c)=(a∪b)∪c;a∩(b∩c)=(a∩b)∩c
3、分配對偶律:a∩(b∪c)=(a∩b)∪(a∩c);a∪(b∩c)=(a∪b)∩(a∪c)
4、對偶律:(a∪b)^c=a^c∩b^c;(a∩b)^c=a^c∪b^c
5、同一律:a∪∅=a;a∩u=a
6、求補律:a∪a'=u;a∩a'=∅
4樓:藥郎小跟班
可以把全集分成du4個子集zhi:
s1 = a交b,
s2 = a-b = a-a交b,
s3 = b-a = b-a交b,
s4 = (a∪
daob)的補
版集權,
a的補集=s3∪s4,
b的補集=s2∪s4。
所以a的補集並b的補集=s2∪s3∪s4
所以(a的補集並b的補集)的補集=s1=a∩b。
5樓:匿名使用者
你說的是bai反演律,也叫摩根法則du,即zhia並b的補
集等於a的補集交
daob的補集內; a交b的補集等於容a的補集並b的補集。 記憶口訣是:並集的補集等於補集的交集; 交集的補集等於補集的並集。
建議你畫一個韋恩圖推導一下
6樓:匿名使用者
這個畫圖 比較容易理解
畫一個全集u,裡邊包含a集與b集,並且a集與b集有交集c
題目所指的就是 全集 u中 除去a集b集的區域
元素之間有交併補的關係嗎,交集並集和補集的概念
沒有。交併補存在於集合的關係中。不包含任何元素的集合.集合與集合的關係只有包含.相等.的關係對嗎?元素和集合間是不是隻有屬於?那並,補,交是?集合的什麼關係呢?如何理解空集是一切集合的子集呢?a a不有1,2兩個元素嗎?他的子集不是4個嗎?空集 不包含任何元素的集合.第四個是空集.a不有1,2兩個元...
什麼是子集,交集,並集,補集,什麼叫交集和並集,什麼叫補集和全集
娛影全球通 子集 對於集合a和集合b,如果集合a中的每個元素都屬於集合b,那麼集合a為集合b的子集,記作a b 或b a 用venn圖表示為 真子集 對於集合a和集合b,如果a b,但存在元素屬於集合b且不屬於集合a,則稱集合a為集合b的真子集,記作a b。交集 對於集合a和集合b,由屬於集合a且屬...
數學概率論表示交集 並集 補集的叫什麼圖
用一條封閉曲線直觀地表示集合及其關係地圖形稱為文氏圖 也稱韋恩圖 比如橙色的圓圈 集合 a 可以表示兩足的所有活物。藍色的圓圈 集合 b 可以表示會飛的所有活物。橙色和藍色的圓圈交疊的區域 叫做交集 包含會飛且兩足的所有活物 比如鸚鵡。把每個單獨的活物型別想象為在這個圖中的某個點 哆嗒數學網 用一條...