曖昧關係是不是不可以總是問對方行蹤

時間 2021-06-08 23:38:46

1樓:

我覺得曖昧關係不可以總是問對方行蹤。這樣會影響彼此的感情。既然不是夫妻,不要過多的干涉對方的生活,彼此有距離才能產生美,而且這種關係最好不要做的太過分,影響了夫妻感情就不好了。

2樓:

其實無論什麼關係,總是不停地問行蹤,時間長了都會被厭煩的

3樓:

當然不可以,每一個人都有自己的一點小小的隱私,總是問對方他也會煩的。

4樓:雨葉

是的,最好不要,因為大家還沒有正式的確立關係,總是詢問容易讓人厭煩。

5樓:東方清雲

當然可以,只是別說只是曖昧關係既然是夫妻關係對方也可以拒絕回答

6樓:來自萬壽寶塔狂熱的薔薇石英

並不是這樣的。您所說的這種只是缺乏安全感的一種在外的表現,您說詢問的曖昧關係分為多種。如果您是正常的情侶關係,那您可以去詢問,但是如果是在朋友的基礎上的曖昧關係,最好不要太過細緻的去問。

7樓:娛人為樂吧

曖昧關係那麼去問人家的行蹤,是不是有點管的太寬了

8樓:佳佳有樂

不可以,人都是有距離感,要保持適當的距離這樣才能產生距離美,經常糾纏就會變成厭煩

9樓:熊愛生活

看那個男的有沒有女朋友或者家庭,如果有,這種行為就很可恥,如果沒有,兩相情願

不定積分的含義

10樓:匿名使用者

就是求導函式是f(x)的函式

11樓:qq1292335420我

性質1:設a與b均為常數,則f(a->b)[a*f(x)+b*g(x)]dx=a*f(a->b)f(x)dx+b*f(a->b)g(x)dx

性質2:設ab)f(x)dx=f(a->c)f(x)dx+f(c->b)f(x)dx

性質3:如果在區間【a,b】上f(x)恆等於1,那麼f(a->b)1dx=f(a->b)dx=b-a

性質4:如果在區間【a,b】上f(x)>=0,那麼f(a->b)f(x)dx>=0(ab)f(x)dx<=m(b-a) (ab)f(x)dx=f(c)(b-a) (a<=c<=b)成立。

12樓:你的眼神唯美

不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。

那就用數字帝國,唉

常用不定積分公式?

13樓:文子

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定,其中f是f的不定積分。

根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計拿搏算關係。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分。

14樓:鞠翠花潮戌

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2)

dx=arcsinx+c

11)∫1/(1+x^2)dx=arctanx+c

12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

擴充套件資料:

積分的一個嚴格的數學定義由波恩哈德·黎曼給出(參見條目“黎曼積分”)。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。從十九世紀起,更高階的積分定義逐漸出現,有了對各種積分域上的各種型別的函式的積分。

比如說,路徑積分是多元函式的積念慧分,積分的區間不再是一條線段(區間[a,b]),而是一條平面上或空間中的曲線段;在面積積分中,曲線被三維空間中的一個敬枝曲面代替。對微分形式的積分是微分幾何中的基本概念。

求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。亮高敏(用換元法說,就是把f(x)換為t,再換回來)

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f‘(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)

15樓:鄒桂枝殳巳

∫secx=ln|secx+tanx|+c推導:左邊=∫dx/正大cosx=∫cosxdx/(cosx)^2=∫d(sinx)/[1-(sinx)^2]令t=sinx,

=∫dt/(1-t^2)

=(1/2)∫dt/(1+t)+(1/2)∫dt/(1-t)=(1/2)∫d(1+t)/(1+t)-(1/2)∫d(1-t)/(1-t)

=(1/2)ln|1+t|-(1/2)ln|1-t|+c=(1/2)ln|(1+t)/(1-t)|+c=(1/2)ln|(1+sinx)/(1-sinx)|+c//在對數中分子分母同乘1+sinx,

=(1/2)ln|(1+sinx)^2/(cosx)^2|+c=ln|(1+sinx)/cosx|+c

=ln|1/cosx+sinx/cosx|+c=ln(secx+tanx|+c=右邊,

∴等式山清飢成立。

提供一些給你!∫a

dx=ax+

c,a和c都逗返是常數

∫x^adx=

[x^(a

+1)]/(a+1)

+c,其中a為常數且a≠

-1∫1/xdx

=ln|x|+c

∫a^xdx=

(a^x)/lna

+c,其中a

>0且a≠1∫

e^xdx

=e^x+c

∫cosxdx=

sinx+c

∫sinxdx=

-cosx+c

∫cotxdx=

ln|sinx|+c

∫tanxdx=

-ln|cosx|+c

=ln|secx|+c

∫secxdx=

(1/2)ln|(1

+sinx)/(1

-sinx)|+c

=ln|secx

+tanx|+c

∫cscxdx=

ln|tan(x/2)|+c

=(1/2)ln|(1

-cosx)/(1

+cosx)|+c

=-ln|cscx

+cotx|+c

=ln|cscx

-cotx|+c

∫sec^2(x)dx=

tanx+c

∫csc^2(x)dx=

-cotx+c

∫secxtanxdx=

secx+c

∫cscxcotxdx=

-cscx+c

∫dx/(a^2

+x^2)

=(1/a)arctan(x/a)+c

∫dx/√(a^2

-x^2)

=arcsin(x/a)+c

∫dx/√(x^2

+a^2)

=ln|x

+√(x^2

+a^2)|+c

∫dx/√(x^2

-a^2)

=ln|x

+√(x^2

-a^2)|+c

∫√(x^2

-a^2)dx=x/2√(x^2

-a^2)-a^2/2ln[x+√(x^2-a^2)]+c

∫√(x^2

+a^2)dx=x/2√(x^2

+a^2)+a^2/2ln[x+√(x^2+a^2)]+c

∫√(a^2

-x^2)dx=x/2√(a^2

-x^2)+a^2/2arcsin(x/a)+c學習進步!望採納,o(∩_∩)o~

16樓:海海

^1)∫0dx=c 不定積分的定義

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)兆搜∫襲茄cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

13)∫secxdx=ln|secx+tanx|+c 基本積分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c

15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c

16) ∫sec^2 x dx=tanx+c;

17) ∫shx dx=chx+c;

18) ∫族禪歷chx dx=shx+c;

19) ∫thx dx=ln(chx)+c;

職高學籍,是不是,不可以報考軍校

是可以考取的,具有高中畢業文化程度或者同等學力即可。士兵考生應當具有高中畢業文化程度或者同等學力。高中畢業士兵考生數量不足時,可以允許具有初中畢業文體程度的士兵報考指揮專業三年制中專班。地方普通中學畢業生報大學本科或者專科班的,應當具有高中畢業文化程度 報中專班的,應當具有初中畢業文化程度。報機要 ...

車貸是不是不可以提前還

法律分析 車貸可以提前還。借款人可以與貸款人協商提前還款,除提前還款會損害貸款人利益的以外,貸款人不能拒絕。但因提前還款而給貸款人增加的費用,要由借款人負擔。法律依據 中華人民共和國民法典 第五百三十條 債權人可以拒絕債務人提前履行債務,但是提前履行不損害債權人利益的除外。債務人提前履行債務給債權人...

西紅柿是不是不可以放冰箱裡?

西紅柿總是不能儲存很久。學這一招,簡單實用!現在是夏天,然而天氣越來越熱,家裡的食物也越來越難儲存。很多朋友喜歡。經常吃的食物放在冰箱裡,但其實很多東西並不適合放在冰箱裡儲存,包括我們很多人喜歡吃的西紅柿。今天的小姑娘就來告訴你,為什麼它們不適合放在冰箱裡儲存。首先,西紅柿在低溫環境下放置一段時間,...