1樓:駱美如安意
1.加法結合律
2.加法交換律
3.乘法結合律
4.乘法交換律
5.乘法分配率
6除法的基本性質
7減法的基本性質
2樓:邸素潔步冬
例11.24+0.78+8.76
解原式=(1.24+8.76)+0.78
=10+0.78
=10.78
【解題關鍵和提示】
運用加法的交換律與結合律,因為1.24與8.76結合起來,和正好是整數10。
例2933-157-43
解原式=933-(157+43)=933-200=733
【解題關鍵和提示】
根據減法去括號的性質,從一個數裡連續減去幾個數,可以減去這幾個數的和。因此題157與43的和正好是200。
例34821-998
=4821-1000+2=3823
【解題關鍵和提示】
此題中的減數998接近1000,我們就把它變成1000-2,根據減法去括號性質,原式=4821-1000+2,這樣就可口算出來了,計算熟練後,998變成1000-2這一步可省略。
例40.4×125×25×0.8
解原式=(0.4×25)×(125×0.8)=10×100=1000
【解題關鍵和提示】
運用乘法的交換律和結合律,因為0.4×25正好得10,而125×0.8正好得100。
例51.25×(8+10)
解原式=1.25×8+1.25×10=10+12.5=22.5
【解題關鍵和提示】
根據乘法分配律,兩個加數的和與一個數相乘,可用每一個加數分別與這個數相乘,再把所得的積相加。
例69123-(123+8.8)
解原式=9123-123-8.8=9000-8.8=8991.2
【解題關鍵和提示】
根據減法去括號的性質,從一個數裡減去幾個數的緝訂光寡叱幹癸吮含經和,可以連續減去這幾個數,因為9123減去123正好得9000,需要注意的是減法去掉括號後,原來加上8.8現已變成減去8.8了。
例71.24×8.3+8.3×1.76
解原式=8.3×(1.24+1.76)=8.3×3=24.9
【解題關鍵和提示】
此種解法是乘法分配律的逆運用。即幾個數同乘以一個數的和,可用這幾個數的和乘以這個數。
例89999×1001
解原式=9999×(1000+1)=9999×1000+9999×1
=10008999
【解題關鍵和提示】
此題把1001看成1000+1,然後根據乘法的分配律去簡算。
例932×125×25
解原式=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
【解題關鍵和提示】
把32分解成4×8,這樣125×8和25×4都可得到整百、整千的數。
小學數學簡便算式有哪幾種
3樓:
一、整體簡便計算。整個一道算式可以用簡便方法計算,這種形式最為常見。例如:
=1.14×10
=11.4
二、區域性簡便計算。一道算式中區域性可以進行簡便計算,這種形式也不少見。
三、中途簡便計算。開始計算並不能簡便計算,而經過一兩步後卻能進行簡便計算,這種情況最容易忽視。例如:
=1.2×(1+5+4)
=1.2×10
=12四、重複簡便計算。在一道題裡不止一次地進行簡便計算,這種情況往往不注意後一次簡便計算。例如:
=8×55×0.125
=8×0.125×55 第二次
=1×55
=55一簡算的根據 a、乘法運算定律 b、加法運算定律 c、減法、除法的運算性質
二簡算的型別 a、直接簡算 b、部分簡算 c、轉化簡算 d、過程簡算
三簡算的幾種公式:
加法:a+b+c=a+(b+c)(加法結合律)
乘法:a×b×c=a×c×b(乘法交換律) a×b×c=a×(b×c)(乘法結合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
減法:a-b-c=a-c-b(減法交換律) a-b-c=a-(b+c)(減法結合律)
除法:a÷b÷c=a÷c÷b(除法交換律) a÷b÷c=a÷(b×c)(除法結合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除數是兩個數的差或和的情況下才能進行分配
小學數學簡便計算公式
4樓:g老師講奧數
總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。
①加法
加法交換律:a+b=b+a;
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
②減法
a-b=-(b-a)
a-b-c=a-(b+c)
減法有一個口訣:加括號,變符號。
③乘法
乘法交換律:a x b=b x a;
乘法結合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小學數學試題中常考的一種題型-計算複雜數式。
經常就會用到乘法分配律,來提取公因數,簡化計算。
【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19
分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等於0);
a x b÷c=a÷c x b(c不等於0);
以上公式是解四則運算題目的基本關係式。
靈活學習,靈活運用。
它們除了正著用,有時候還得會倒著用。
【例2】計算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已經湊出來了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)
=47.9x(6.6+3.4)+17
=496
注意:例2題目中我們將乘法分配律倒著使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外還用到了一個特別的公式。
529x0.34=529÷10x10x0.34
這個公式總結出來,即:
a x b=a÷c x c x b(c不等於0)。
5樓:匿名使用者
小學五年級數學簡便運算歸類練習
明確三點:1、一般情況下,四則運算的計算順序是:有括號時,先算括號裡面的;只有同一級運算時,從左往右;含有兩級運算,先算乘除後算加減。
2、由於有的計算題具有它自身的特徵,這時運用運算定律,可以使計算過程簡單,同時又不容易出錯。
加法交換律:a+b=b+a 乘法交換律:a×b=b×a
加法結合律:(a+b)+c=a+(b+c)乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
3、注意對於同一個計算題,用簡便方法計算,與不用簡便方法計算得到的結果相同。我們可以用兩種計算方法得到的結果對比,檢驗我們的計算是否正確。
一、變換位置
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括號時,我們可以“帶符號搬家” 。
“符號搬家” :
a+b+c=a+c+b a×b×c=a×c×b a+b-c=a-c+b a÷b÷c=a÷c÷b
a-b+c=a+c-b a-b-c=a-c-b a÷b×c=a×c÷b a×b÷c=a÷c×b
根據:加法交換律和乘法交換率
練習:12.06+5.07+2.94
25×7×4
30.34-10.2+9.66
102×7.3÷5.1
125÷2×8
34÷4÷1.7
7×3÷7×3
二、加括號 1、當一個計算題只有加減運算又沒有括號時,我們可以在加號後面直接添括號,括到括號裡的運算原來是加還是加,是減還是減。但是在減號後面添括號時,括到括號裡的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括號時,前是加號,括號裡不變號,括號前是減號,括號裡要變號)
根據:加法結合律a+b+c=a+(b+c) a+b-c=a +(b-c),
a-b+c=a-(b-c) a-b-c= a-( b +c)
1132+752+353
874+295-95
752-383+83
41.06-19.72-20.28
2、當一個計算題只有乘除運算又沒有括號時,我們可以在乘號後面直接添括號,括到括號裡的運算,原來是乘還是乘,是除還是除。但是在除號後面添括號時,括到括號裡的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(在乘除運算中添括號時,前是乘號,括號裡不變號,括號前是除號,括號裡要變號。
)根據:乘法結合律
a×b×c=a×(b×c) a×b÷c=a×(b÷c) a÷b÷c=a÷(b×c)
1.06×2.5×4 17×0.6÷0.3 32.6÷4÷2.5
三、去括號 1、當一個計算題只有加減運算又有括號時,我們可以將加號後面的括號直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括號去掉時,原來括號裡的加,現在要變為減;原來是減,現在就要變為加。(注:
去掉括號是新增括號的逆運算)
a+(b+c)= a+b+c a +(b-c)= a+b-c a-(b-c)= a-b+c a-( b +c)= a-b-c
5.68+(5.39+4.32)
7172+(185-172)
576-(76-52)
19.68-(2.97+9.68)
2、當一個計算題只有乘除運算又有括號時,我們可以將乘號後面的括號直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括號去掉時,原來括號裡的乘,現在就要變為除;原來是除,現在就要變為乘。(現在沒有括號了,可以帶符號搬家了)(注:
去掉括號是新增括號的逆運算)a×(b×c) = a×b×c
0.25×(4×1.2) 1.25×(213×0.8)
a×(b÷c) =a×b÷c 1.25×(8÷0.5)
a÷(b×c) = a÷b÷c 46÷(4.6×2)
a÷(b÷c) = a÷b×c 4÷(6÷0.25)
四、乘法分配律的兩種典型型別
1、括號裡是加或減運算,與另一個數相乘,注意分配
(40+8)×25
24×(2+10)
125×(8+80)
36×(10+5) 15×(40-8)
2、注意相同因數的提取。0.92×1.41+0.92×8.59 1.3×11.6-1.6×1.3
五、一些簡算小技巧
1、巧借,可要注意還哦 9999+999+99+9
有借有還,再借不難嘛。4821-998
2、分拆,可不要改變數的大小哦
3.2×12.5×25
1.25×88
3.6×0.25
3、注意構造,讓算式滿足乘法分配律的條件。 3.8×9.9+0.38
26×9.9 98×3.27+6.54 101×2.17-2.17
超超超急!!小學數學簡便計算有幾種
1.a b b a 1 2 2 1 2.a b c a b c a c b 1 2 3 1 2 3 1 3 2 3.a b b a 1 2 2 1 4.a b a 1 b 1 2 1 1 2 5.a b c a b c a c b 1 2 3 1 2 3 1 3 2 還有湊整法.如 4 56 25 ...
1 1到底有幾個答案,1 1到底有幾種答案
從數學角度 只有1個。1 1 2 從物理角度 可有1 1 1 1體積綠豆 1體積大豆 1體積的豆 從生物角度 1 1 3 1只公雞 1只母雞 3只雞 從語文角度 1 1 任何數.就一個,1 1 2!1 1到底有幾種答案 問一下1 1到底有幾種答案?等於2,只有1種答案,除非是腦筋急轉彎 沒有特殊意義...
DOTA到底有幾種版本
3種吧!一般說的dota 就是普通的dota 是defense of the ancients的簡稱,可以譯作守護古樹 守護遺蹟 遠古遺蹟守衛!dota imba是英文imbalance in balance的縮寫,翻譯為平衡中不平衡的遊戲,其中英雄的技能以及某些物品都非常的imba,故此被叫做do...