1樓:匿名使用者
(sinx)^2 / (cosx)^3=1/cosx^3-1/cosx
=cosx/[1-sinx^2]^2-cosx/[1-sinx^2]
不定積分==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -1/2ln|(1+sinx)/(1-sinx)|+c
==[ln[abs(tanx)]+sin(x)/cos(x)^2]/2 -ln[abstan(x+pi/4)]+c
2樓:
由∫secx dx = ln|secx+tanx| + c1
故 ∫(secx)^3 dx
=∫secx dtanx
=secx·tanx -∫[(tanx)^2·secx]dx
=secx·tanx -∫dx
=secx·tanx - ∫(secx)^3 dx + ∫secx dx
=secx·tanx - ∫(secx)^3 dx + ln|secx+tanx| + c1
所以 ∫(secx)^3 dx =1/2 secx·tanx + 1/2 ln|secx+tanx| + c
∫(sinx)^2 / (cosx)^3 dx
=∫[1-(cosx)^2] / (cosx)^3 dx
=∫[(secx)^3 - secx] dx
=∫(secx)^3 dx - ∫secx dx
=1/2 secx·tanx - 1/2 ln|secx+tanx| + c